Description: A bra is a continuous linear functional. (Contributed by NM, 30-May-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bracnln | ⊢ ( 𝐴 ∈ ℋ → ( bra ‘ 𝐴 ) ∈ ( LinFn ∩ ContFn ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bra11 | ⊢ bra : ℋ –1-1-onto→ ( LinFn ∩ ContFn ) | |
| 2 | f1of | ⊢ ( bra : ℋ –1-1-onto→ ( LinFn ∩ ContFn ) → bra : ℋ ⟶ ( LinFn ∩ ContFn ) ) | |
| 3 | 1 2 | ax-mp | ⊢ bra : ℋ ⟶ ( LinFn ∩ ContFn ) | 
| 4 | 3 | ffvelcdmi | ⊢ ( 𝐴 ∈ ℋ → ( bra ‘ 𝐴 ) ∈ ( LinFn ∩ ContFn ) ) |