Description: A bra is a continuous linear functional. (Contributed by NM, 30-May-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | bracnln | ⊢ ( 𝐴 ∈ ℋ → ( bra ‘ 𝐴 ) ∈ ( LinFn ∩ ContFn ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bra11 | ⊢ bra : ℋ –1-1-onto→ ( LinFn ∩ ContFn ) | |
2 | f1of | ⊢ ( bra : ℋ –1-1-onto→ ( LinFn ∩ ContFn ) → bra : ℋ ⟶ ( LinFn ∩ ContFn ) ) | |
3 | 1 2 | ax-mp | ⊢ bra : ℋ ⟶ ( LinFn ∩ ContFn ) |
4 | 3 | ffvelrni | ⊢ ( 𝐴 ∈ ℋ → ( bra ‘ 𝐴 ) ∈ ( LinFn ∩ ContFn ) ) |