Metamath Proof Explorer


Theorem bracnln

Description: A bra is a continuous linear functional. (Contributed by NM, 30-May-2006) (New usage is discouraged.)

Ref Expression
Assertion bracnln ( 𝐴 ∈ ℋ → ( bra ‘ 𝐴 ) ∈ ( LinFn ∩ ContFn ) )

Proof

Step Hyp Ref Expression
1 bra11 bra : ℋ –1-1-onto→ ( LinFn ∩ ContFn )
2 f1of ( bra : ℋ –1-1-onto→ ( LinFn ∩ ContFn ) → bra : ℋ ⟶ ( LinFn ∩ ContFn ) )
3 1 2 ax-mp bra : ℋ ⟶ ( LinFn ∩ ContFn )
4 3 ffvelrni ( 𝐴 ∈ ℋ → ( bra ‘ 𝐴 ) ∈ ( LinFn ∩ ContFn ) )