Description: The bra function is a functional. (Contributed by NM, 23-May-2006) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | brafn | ⊢ ( 𝐴 ∈ ℋ → ( bra ‘ 𝐴 ) : ℋ ⟶ ℂ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brafval | ⊢ ( 𝐴 ∈ ℋ → ( bra ‘ 𝐴 ) = ( 𝑥 ∈ ℋ ↦ ( 𝑥 ·ih 𝐴 ) ) ) | |
2 | hicl | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝑥 ·ih 𝐴 ) ∈ ℂ ) | |
3 | 2 | ancoms | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑥 ·ih 𝐴 ) ∈ ℂ ) |
4 | 1 3 | fmpt3d | ⊢ ( 𝐴 ∈ ℋ → ( bra ‘ 𝐴 ) : ℋ ⟶ ℂ ) |