Metamath Proof Explorer


Theorem brafn

Description: The bra function is a functional. (Contributed by NM, 23-May-2006) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)

Ref Expression
Assertion brafn ( 𝐴 ∈ ℋ → ( bra ‘ 𝐴 ) : ℋ ⟶ ℂ )

Proof

Step Hyp Ref Expression
1 brafval ( 𝐴 ∈ ℋ → ( bra ‘ 𝐴 ) = ( 𝑥 ∈ ℋ ↦ ( 𝑥 ·ih 𝐴 ) ) )
2 hicl ( ( 𝑥 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝑥 ·ih 𝐴 ) ∈ ℂ )
3 2 ancoms ( ( 𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑥 ·ih 𝐴 ) ∈ ℂ )
4 1 3 fmpt3d ( 𝐴 ∈ ℋ → ( bra ‘ 𝐴 ) : ℋ ⟶ ℂ )