Metamath Proof Explorer


Theorem brafnmul

Description: Anti-linearity property of bra functional for multiplication. (Contributed by NM, 31-May-2006) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)

Ref Expression
Assertion brafnmul ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( bra ‘ ( 𝐴 · 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) ·fn ( bra ‘ 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 hvmulcl ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 · 𝐵 ) ∈ ℋ )
2 brafval ( ( 𝐴 · 𝐵 ) ∈ ℋ → ( bra ‘ ( 𝐴 · 𝐵 ) ) = ( 𝑥 ∈ ℋ ↦ ( 𝑥 ·ih ( 𝐴 · 𝐵 ) ) ) )
3 1 2 syl ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( bra ‘ ( 𝐴 · 𝐵 ) ) = ( 𝑥 ∈ ℋ ↦ ( 𝑥 ·ih ( 𝐴 · 𝐵 ) ) ) )
4 cjcl ( 𝐴 ∈ ℂ → ( ∗ ‘ 𝐴 ) ∈ ℂ )
5 brafn ( 𝐵 ∈ ℋ → ( bra ‘ 𝐵 ) : ℋ ⟶ ℂ )
6 hfmmval ( ( ( ∗ ‘ 𝐴 ) ∈ ℂ ∧ ( bra ‘ 𝐵 ) : ℋ ⟶ ℂ ) → ( ( ∗ ‘ 𝐴 ) ·fn ( bra ‘ 𝐵 ) ) = ( 𝑥 ∈ ℋ ↦ ( ( ∗ ‘ 𝐴 ) · ( ( bra ‘ 𝐵 ) ‘ 𝑥 ) ) ) )
7 4 5 6 syl2an ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( ( ∗ ‘ 𝐴 ) ·fn ( bra ‘ 𝐵 ) ) = ( 𝑥 ∈ ℋ ↦ ( ( ∗ ‘ 𝐴 ) · ( ( bra ‘ 𝐵 ) ‘ 𝑥 ) ) ) )
8 his5 ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝑥 ·ih ( 𝐴 · 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) · ( 𝑥 ·ih 𝐵 ) ) )
9 8 3expa ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ) ∧ 𝐵 ∈ ℋ ) → ( 𝑥 ·ih ( 𝐴 · 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) · ( 𝑥 ·ih 𝐵 ) ) )
10 9 an32s ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( 𝑥 ·ih ( 𝐴 · 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) · ( 𝑥 ·ih 𝐵 ) ) )
11 braval ( ( 𝐵 ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( bra ‘ 𝐵 ) ‘ 𝑥 ) = ( 𝑥 ·ih 𝐵 ) )
12 11 adantll ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( bra ‘ 𝐵 ) ‘ 𝑥 ) = ( 𝑥 ·ih 𝐵 ) )
13 12 oveq2d ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( ∗ ‘ 𝐴 ) · ( ( bra ‘ 𝐵 ) ‘ 𝑥 ) ) = ( ( ∗ ‘ 𝐴 ) · ( 𝑥 ·ih 𝐵 ) ) )
14 10 13 eqtr4d ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( 𝑥 ·ih ( 𝐴 · 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) · ( ( bra ‘ 𝐵 ) ‘ 𝑥 ) ) )
15 14 mpteq2dva ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( 𝑥 ∈ ℋ ↦ ( 𝑥 ·ih ( 𝐴 · 𝐵 ) ) ) = ( 𝑥 ∈ ℋ ↦ ( ( ∗ ‘ 𝐴 ) · ( ( bra ‘ 𝐵 ) ‘ 𝑥 ) ) ) )
16 7 15 eqtr4d ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( ( ∗ ‘ 𝐴 ) ·fn ( bra ‘ 𝐵 ) ) = ( 𝑥 ∈ ℋ ↦ ( 𝑥 ·ih ( 𝐴 · 𝐵 ) ) ) )
17 3 16 eqtr4d ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( bra ‘ ( 𝐴 · 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) ·fn ( bra ‘ 𝐵 ) ) )