| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hvmulcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈   ℋ )  →  ( 𝐴  ·ℎ  𝐵 )  ∈   ℋ ) | 
						
							| 2 |  | brafval | ⊢ ( ( 𝐴  ·ℎ  𝐵 )  ∈   ℋ  →  ( bra ‘ ( 𝐴  ·ℎ  𝐵 ) )  =  ( 𝑥  ∈   ℋ  ↦  ( 𝑥  ·ih  ( 𝐴  ·ℎ  𝐵 ) ) ) ) | 
						
							| 3 | 1 2 | syl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈   ℋ )  →  ( bra ‘ ( 𝐴  ·ℎ  𝐵 ) )  =  ( 𝑥  ∈   ℋ  ↦  ( 𝑥  ·ih  ( 𝐴  ·ℎ  𝐵 ) ) ) ) | 
						
							| 4 |  | cjcl | ⊢ ( 𝐴  ∈  ℂ  →  ( ∗ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 5 |  | brafn | ⊢ ( 𝐵  ∈   ℋ  →  ( bra ‘ 𝐵 ) :  ℋ ⟶ ℂ ) | 
						
							| 6 |  | hfmmval | ⊢ ( ( ( ∗ ‘ 𝐴 )  ∈  ℂ  ∧  ( bra ‘ 𝐵 ) :  ℋ ⟶ ℂ )  →  ( ( ∗ ‘ 𝐴 )  ·fn  ( bra ‘ 𝐵 ) )  =  ( 𝑥  ∈   ℋ  ↦  ( ( ∗ ‘ 𝐴 )  ·  ( ( bra ‘ 𝐵 ) ‘ 𝑥 ) ) ) ) | 
						
							| 7 | 4 5 6 | syl2an | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈   ℋ )  →  ( ( ∗ ‘ 𝐴 )  ·fn  ( bra ‘ 𝐵 ) )  =  ( 𝑥  ∈   ℋ  ↦  ( ( ∗ ‘ 𝐴 )  ·  ( ( bra ‘ 𝐵 ) ‘ 𝑥 ) ) ) ) | 
						
							| 8 |  | his5 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑥  ∈   ℋ  ∧  𝐵  ∈   ℋ )  →  ( 𝑥  ·ih  ( 𝐴  ·ℎ  𝐵 ) )  =  ( ( ∗ ‘ 𝐴 )  ·  ( 𝑥  ·ih  𝐵 ) ) ) | 
						
							| 9 | 8 | 3expa | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑥  ∈   ℋ )  ∧  𝐵  ∈   ℋ )  →  ( 𝑥  ·ih  ( 𝐴  ·ℎ  𝐵 ) )  =  ( ( ∗ ‘ 𝐴 )  ·  ( 𝑥  ·ih  𝐵 ) ) ) | 
						
							| 10 | 9 | an32s | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈   ℋ )  ∧  𝑥  ∈   ℋ )  →  ( 𝑥  ·ih  ( 𝐴  ·ℎ  𝐵 ) )  =  ( ( ∗ ‘ 𝐴 )  ·  ( 𝑥  ·ih  𝐵 ) ) ) | 
						
							| 11 |  | braval | ⊢ ( ( 𝐵  ∈   ℋ  ∧  𝑥  ∈   ℋ )  →  ( ( bra ‘ 𝐵 ) ‘ 𝑥 )  =  ( 𝑥  ·ih  𝐵 ) ) | 
						
							| 12 | 11 | adantll | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈   ℋ )  ∧  𝑥  ∈   ℋ )  →  ( ( bra ‘ 𝐵 ) ‘ 𝑥 )  =  ( 𝑥  ·ih  𝐵 ) ) | 
						
							| 13 | 12 | oveq2d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈   ℋ )  ∧  𝑥  ∈   ℋ )  →  ( ( ∗ ‘ 𝐴 )  ·  ( ( bra ‘ 𝐵 ) ‘ 𝑥 ) )  =  ( ( ∗ ‘ 𝐴 )  ·  ( 𝑥  ·ih  𝐵 ) ) ) | 
						
							| 14 | 10 13 | eqtr4d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈   ℋ )  ∧  𝑥  ∈   ℋ )  →  ( 𝑥  ·ih  ( 𝐴  ·ℎ  𝐵 ) )  =  ( ( ∗ ‘ 𝐴 )  ·  ( ( bra ‘ 𝐵 ) ‘ 𝑥 ) ) ) | 
						
							| 15 | 14 | mpteq2dva | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈   ℋ )  →  ( 𝑥  ∈   ℋ  ↦  ( 𝑥  ·ih  ( 𝐴  ·ℎ  𝐵 ) ) )  =  ( 𝑥  ∈   ℋ  ↦  ( ( ∗ ‘ 𝐴 )  ·  ( ( bra ‘ 𝐵 ) ‘ 𝑥 ) ) ) ) | 
						
							| 16 | 7 15 | eqtr4d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈   ℋ )  →  ( ( ∗ ‘ 𝐴 )  ·fn  ( bra ‘ 𝐵 ) )  =  ( 𝑥  ∈   ℋ  ↦  ( 𝑥  ·ih  ( 𝐴  ·ℎ  𝐵 ) ) ) ) | 
						
							| 17 | 3 16 | eqtr4d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈   ℋ )  →  ( bra ‘ ( 𝐴  ·ℎ  𝐵 ) )  =  ( ( ∗ ‘ 𝐴 )  ·fn  ( bra ‘ 𝐵 ) ) ) |