Step |
Hyp |
Ref |
Expression |
1 |
|
hvmulcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ·ℎ 𝐵 ) ∈ ℋ ) |
2 |
|
brafval |
⊢ ( ( 𝐴 ·ℎ 𝐵 ) ∈ ℋ → ( bra ‘ ( 𝐴 ·ℎ 𝐵 ) ) = ( 𝑥 ∈ ℋ ↦ ( 𝑥 ·ih ( 𝐴 ·ℎ 𝐵 ) ) ) ) |
3 |
1 2
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( bra ‘ ( 𝐴 ·ℎ 𝐵 ) ) = ( 𝑥 ∈ ℋ ↦ ( 𝑥 ·ih ( 𝐴 ·ℎ 𝐵 ) ) ) ) |
4 |
|
cjcl |
⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ 𝐴 ) ∈ ℂ ) |
5 |
|
brafn |
⊢ ( 𝐵 ∈ ℋ → ( bra ‘ 𝐵 ) : ℋ ⟶ ℂ ) |
6 |
|
hfmmval |
⊢ ( ( ( ∗ ‘ 𝐴 ) ∈ ℂ ∧ ( bra ‘ 𝐵 ) : ℋ ⟶ ℂ ) → ( ( ∗ ‘ 𝐴 ) ·fn ( bra ‘ 𝐵 ) ) = ( 𝑥 ∈ ℋ ↦ ( ( ∗ ‘ 𝐴 ) · ( ( bra ‘ 𝐵 ) ‘ 𝑥 ) ) ) ) |
7 |
4 5 6
|
syl2an |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( ( ∗ ‘ 𝐴 ) ·fn ( bra ‘ 𝐵 ) ) = ( 𝑥 ∈ ℋ ↦ ( ( ∗ ‘ 𝐴 ) · ( ( bra ‘ 𝐵 ) ‘ 𝑥 ) ) ) ) |
8 |
|
his5 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝑥 ·ih ( 𝐴 ·ℎ 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) · ( 𝑥 ·ih 𝐵 ) ) ) |
9 |
8
|
3expa |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ) ∧ 𝐵 ∈ ℋ ) → ( 𝑥 ·ih ( 𝐴 ·ℎ 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) · ( 𝑥 ·ih 𝐵 ) ) ) |
10 |
9
|
an32s |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( 𝑥 ·ih ( 𝐴 ·ℎ 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) · ( 𝑥 ·ih 𝐵 ) ) ) |
11 |
|
braval |
⊢ ( ( 𝐵 ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( bra ‘ 𝐵 ) ‘ 𝑥 ) = ( 𝑥 ·ih 𝐵 ) ) |
12 |
11
|
adantll |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( bra ‘ 𝐵 ) ‘ 𝑥 ) = ( 𝑥 ·ih 𝐵 ) ) |
13 |
12
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( ∗ ‘ 𝐴 ) · ( ( bra ‘ 𝐵 ) ‘ 𝑥 ) ) = ( ( ∗ ‘ 𝐴 ) · ( 𝑥 ·ih 𝐵 ) ) ) |
14 |
10 13
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( 𝑥 ·ih ( 𝐴 ·ℎ 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) · ( ( bra ‘ 𝐵 ) ‘ 𝑥 ) ) ) |
15 |
14
|
mpteq2dva |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( 𝑥 ∈ ℋ ↦ ( 𝑥 ·ih ( 𝐴 ·ℎ 𝐵 ) ) ) = ( 𝑥 ∈ ℋ ↦ ( ( ∗ ‘ 𝐴 ) · ( ( bra ‘ 𝐵 ) ‘ 𝑥 ) ) ) ) |
16 |
7 15
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( ( ∗ ‘ 𝐴 ) ·fn ( bra ‘ 𝐵 ) ) = ( 𝑥 ∈ ℋ ↦ ( 𝑥 ·ih ( 𝐴 ·ℎ 𝐵 ) ) ) ) |
17 |
3 16
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( bra ‘ ( 𝐴 ·ℎ 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) ·fn ( bra ‘ 𝐵 ) ) ) |