Metamath Proof Explorer


Theorem brafval

Description: The bra of a vector, expressed as <. A | in Dirac notation. See df-bra . (Contributed by NM, 15-May-2006) (Revised by Mario Carneiro, 23-Aug-2014) (New usage is discouraged.)

Ref Expression
Assertion brafval ( 𝐴 ∈ ℋ → ( bra ‘ 𝐴 ) = ( 𝑥 ∈ ℋ ↦ ( 𝑥 ·ih 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 oveq2 ( 𝑦 = 𝐴 → ( 𝑥 ·ih 𝑦 ) = ( 𝑥 ·ih 𝐴 ) )
2 1 mpteq2dv ( 𝑦 = 𝐴 → ( 𝑥 ∈ ℋ ↦ ( 𝑥 ·ih 𝑦 ) ) = ( 𝑥 ∈ ℋ ↦ ( 𝑥 ·ih 𝐴 ) ) )
3 df-bra bra = ( 𝑦 ∈ ℋ ↦ ( 𝑥 ∈ ℋ ↦ ( 𝑥 ·ih 𝑦 ) ) )
4 ax-hilex ℋ ∈ V
5 4 mptex ( 𝑥 ∈ ℋ ↦ ( 𝑥 ·ih 𝐴 ) ) ∈ V
6 2 3 5 fvmpt ( 𝐴 ∈ ℋ → ( bra ‘ 𝐴 ) = ( 𝑥 ∈ ℋ ↦ ( 𝑥 ·ih 𝐴 ) ) )