| Step | Hyp | Ref | Expression | 
						
							| 1 |  | brafn | ⊢ ( 𝐴  ∈   ℋ  →  ( bra ‘ 𝐴 ) :  ℋ ⟶ ℂ ) | 
						
							| 2 |  | simpll | ⊢ ( ( ( 𝐴  ∈   ℋ  ∧  𝑥  ∈  ℂ )  ∧  ( 𝑦  ∈   ℋ  ∧  𝑧  ∈   ℋ ) )  →  𝐴  ∈   ℋ ) | 
						
							| 3 |  | hvmulcl | ⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈   ℋ )  →  ( 𝑥  ·ℎ  𝑦 )  ∈   ℋ ) | 
						
							| 4 | 3 | ad2ant2lr | ⊢ ( ( ( 𝐴  ∈   ℋ  ∧  𝑥  ∈  ℂ )  ∧  ( 𝑦  ∈   ℋ  ∧  𝑧  ∈   ℋ ) )  →  ( 𝑥  ·ℎ  𝑦 )  ∈   ℋ ) | 
						
							| 5 |  | simprr | ⊢ ( ( ( 𝐴  ∈   ℋ  ∧  𝑥  ∈  ℂ )  ∧  ( 𝑦  ∈   ℋ  ∧  𝑧  ∈   ℋ ) )  →  𝑧  ∈   ℋ ) | 
						
							| 6 |  | braadd | ⊢ ( ( 𝐴  ∈   ℋ  ∧  ( 𝑥  ·ℎ  𝑦 )  ∈   ℋ  ∧  𝑧  ∈   ℋ )  →  ( ( bra ‘ 𝐴 ) ‘ ( ( 𝑥  ·ℎ  𝑦 )  +ℎ  𝑧 ) )  =  ( ( ( bra ‘ 𝐴 ) ‘ ( 𝑥  ·ℎ  𝑦 ) )  +  ( ( bra ‘ 𝐴 ) ‘ 𝑧 ) ) ) | 
						
							| 7 | 2 4 5 6 | syl3anc | ⊢ ( ( ( 𝐴  ∈   ℋ  ∧  𝑥  ∈  ℂ )  ∧  ( 𝑦  ∈   ℋ  ∧  𝑧  ∈   ℋ ) )  →  ( ( bra ‘ 𝐴 ) ‘ ( ( 𝑥  ·ℎ  𝑦 )  +ℎ  𝑧 ) )  =  ( ( ( bra ‘ 𝐴 ) ‘ ( 𝑥  ·ℎ  𝑦 ) )  +  ( ( bra ‘ 𝐴 ) ‘ 𝑧 ) ) ) | 
						
							| 8 |  | bramul | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝑥  ∈  ℂ  ∧  𝑦  ∈   ℋ )  →  ( ( bra ‘ 𝐴 ) ‘ ( 𝑥  ·ℎ  𝑦 ) )  =  ( 𝑥  ·  ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) | 
						
							| 9 | 8 | 3expa | ⊢ ( ( ( 𝐴  ∈   ℋ  ∧  𝑥  ∈  ℂ )  ∧  𝑦  ∈   ℋ )  →  ( ( bra ‘ 𝐴 ) ‘ ( 𝑥  ·ℎ  𝑦 ) )  =  ( 𝑥  ·  ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) | 
						
							| 10 | 9 | adantrr | ⊢ ( ( ( 𝐴  ∈   ℋ  ∧  𝑥  ∈  ℂ )  ∧  ( 𝑦  ∈   ℋ  ∧  𝑧  ∈   ℋ ) )  →  ( ( bra ‘ 𝐴 ) ‘ ( 𝑥  ·ℎ  𝑦 ) )  =  ( 𝑥  ·  ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) | 
						
							| 11 | 10 | oveq1d | ⊢ ( ( ( 𝐴  ∈   ℋ  ∧  𝑥  ∈  ℂ )  ∧  ( 𝑦  ∈   ℋ  ∧  𝑧  ∈   ℋ ) )  →  ( ( ( bra ‘ 𝐴 ) ‘ ( 𝑥  ·ℎ  𝑦 ) )  +  ( ( bra ‘ 𝐴 ) ‘ 𝑧 ) )  =  ( ( 𝑥  ·  ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) )  +  ( ( bra ‘ 𝐴 ) ‘ 𝑧 ) ) ) | 
						
							| 12 | 7 11 | eqtrd | ⊢ ( ( ( 𝐴  ∈   ℋ  ∧  𝑥  ∈  ℂ )  ∧  ( 𝑦  ∈   ℋ  ∧  𝑧  ∈   ℋ ) )  →  ( ( bra ‘ 𝐴 ) ‘ ( ( 𝑥  ·ℎ  𝑦 )  +ℎ  𝑧 ) )  =  ( ( 𝑥  ·  ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) )  +  ( ( bra ‘ 𝐴 ) ‘ 𝑧 ) ) ) | 
						
							| 13 | 12 | ralrimivva | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝑥  ∈  ℂ )  →  ∀ 𝑦  ∈   ℋ ∀ 𝑧  ∈   ℋ ( ( bra ‘ 𝐴 ) ‘ ( ( 𝑥  ·ℎ  𝑦 )  +ℎ  𝑧 ) )  =  ( ( 𝑥  ·  ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) )  +  ( ( bra ‘ 𝐴 ) ‘ 𝑧 ) ) ) | 
						
							| 14 | 13 | ralrimiva | ⊢ ( 𝐴  ∈   ℋ  →  ∀ 𝑥  ∈  ℂ ∀ 𝑦  ∈   ℋ ∀ 𝑧  ∈   ℋ ( ( bra ‘ 𝐴 ) ‘ ( ( 𝑥  ·ℎ  𝑦 )  +ℎ  𝑧 ) )  =  ( ( 𝑥  ·  ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) )  +  ( ( bra ‘ 𝐴 ) ‘ 𝑧 ) ) ) | 
						
							| 15 |  | ellnfn | ⊢ ( ( bra ‘ 𝐴 )  ∈  LinFn  ↔  ( ( bra ‘ 𝐴 ) :  ℋ ⟶ ℂ  ∧  ∀ 𝑥  ∈  ℂ ∀ 𝑦  ∈   ℋ ∀ 𝑧  ∈   ℋ ( ( bra ‘ 𝐴 ) ‘ ( ( 𝑥  ·ℎ  𝑦 )  +ℎ  𝑧 ) )  =  ( ( 𝑥  ·  ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) )  +  ( ( bra ‘ 𝐴 ) ‘ 𝑧 ) ) ) ) | 
						
							| 16 | 1 14 15 | sylanbrc | ⊢ ( 𝐴  ∈   ℋ  →  ( bra ‘ 𝐴 )  ∈  LinFn ) |