Step |
Hyp |
Ref |
Expression |
1 |
|
brafn |
⊢ ( 𝐴 ∈ ℋ → ( bra ‘ 𝐴 ) : ℋ ⟶ ℂ ) |
2 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ) → 𝐴 ∈ ℋ ) |
3 |
|
hvmulcl |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ ) |
4 |
3
|
ad2ant2lr |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ) → ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ ) |
5 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ) → 𝑧 ∈ ℋ ) |
6 |
|
braadd |
⊢ ( ( 𝐴 ∈ ℋ ∧ ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( bra ‘ 𝐴 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( ( bra ‘ 𝐴 ) ‘ ( 𝑥 ·ℎ 𝑦 ) ) + ( ( bra ‘ 𝐴 ) ‘ 𝑧 ) ) ) |
7 |
2 4 5 6
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ) → ( ( bra ‘ 𝐴 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( ( bra ‘ 𝐴 ) ‘ ( 𝑥 ·ℎ 𝑦 ) ) + ( ( bra ‘ 𝐴 ) ‘ 𝑧 ) ) ) |
8 |
|
bramul |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( ( bra ‘ 𝐴 ) ‘ ( 𝑥 ·ℎ 𝑦 ) ) = ( 𝑥 · ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) |
9 |
8
|
3expa |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ ) ∧ 𝑦 ∈ ℋ ) → ( ( bra ‘ 𝐴 ) ‘ ( 𝑥 ·ℎ 𝑦 ) ) = ( 𝑥 · ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) |
10 |
9
|
adantrr |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ) → ( ( bra ‘ 𝐴 ) ‘ ( 𝑥 ·ℎ 𝑦 ) ) = ( 𝑥 · ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) |
11 |
10
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ) → ( ( ( bra ‘ 𝐴 ) ‘ ( 𝑥 ·ℎ 𝑦 ) ) + ( ( bra ‘ 𝐴 ) ‘ 𝑧 ) ) = ( ( 𝑥 · ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) + ( ( bra ‘ 𝐴 ) ‘ 𝑧 ) ) ) |
12 |
7 11
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ) → ( ( bra ‘ 𝐴 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 · ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) + ( ( bra ‘ 𝐴 ) ‘ 𝑧 ) ) ) |
13 |
12
|
ralrimivva |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ ) → ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( bra ‘ 𝐴 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 · ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) + ( ( bra ‘ 𝐴 ) ‘ 𝑧 ) ) ) |
14 |
13
|
ralrimiva |
⊢ ( 𝐴 ∈ ℋ → ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( bra ‘ 𝐴 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 · ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) + ( ( bra ‘ 𝐴 ) ‘ 𝑧 ) ) ) |
15 |
|
ellnfn |
⊢ ( ( bra ‘ 𝐴 ) ∈ LinFn ↔ ( ( bra ‘ 𝐴 ) : ℋ ⟶ ℂ ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( bra ‘ 𝐴 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 · ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) + ( ( bra ‘ 𝐴 ) ‘ 𝑧 ) ) ) ) |
16 |
1 14 15
|
sylanbrc |
⊢ ( 𝐴 ∈ ℋ → ( bra ‘ 𝐴 ) ∈ LinFn ) |