| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opex |
⊢ 〈 𝐴 , 𝐵 〉 ∈ V |
| 2 |
|
opex |
⊢ 〈 𝐶 , 𝐷 〉 ∈ V |
| 3 |
|
eleq1 |
⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( 𝑥 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ↔ 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ) |
| 4 |
3
|
anbi1d |
⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( ( 𝑥 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ↔ ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ) ) |
| 5 |
|
fveq2 |
⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( 1st ‘ 𝑥 ) = ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ) |
| 6 |
5
|
fveq1d |
⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( ( 1st ‘ 𝑥 ) ‘ 𝑖 ) = ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) |
| 7 |
|
fveq2 |
⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) |
| 8 |
7
|
fveq1d |
⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( ( 2nd ‘ 𝑥 ) ‘ 𝑖 ) = ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) |
| 9 |
6 8
|
oveq12d |
⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( ( ( 1st ‘ 𝑥 ) ‘ 𝑖 ) − ( ( 2nd ‘ 𝑥 ) ‘ 𝑖 ) ) = ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ) |
| 10 |
9
|
oveq1d |
⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( ( ( ( 1st ‘ 𝑥 ) ‘ 𝑖 ) − ( ( 2nd ‘ 𝑥 ) ‘ 𝑖 ) ) ↑ 2 ) = ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) ) |
| 11 |
10
|
sumeq2sdv |
⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 𝑥 ) ‘ 𝑖 ) − ( ( 2nd ‘ 𝑥 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) ) |
| 12 |
11
|
eqeq1d |
⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 𝑥 ) ‘ 𝑖 ) − ( ( 2nd ‘ 𝑥 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 𝑦 ) ‘ 𝑖 ) − ( ( 2nd ‘ 𝑦 ) ‘ 𝑖 ) ) ↑ 2 ) ↔ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 𝑦 ) ‘ 𝑖 ) − ( ( 2nd ‘ 𝑦 ) ‘ 𝑖 ) ) ↑ 2 ) ) ) |
| 13 |
4 12
|
anbi12d |
⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( ( ( 𝑥 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 𝑥 ) ‘ 𝑖 ) − ( ( 2nd ‘ 𝑥 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 𝑦 ) ‘ 𝑖 ) − ( ( 2nd ‘ 𝑦 ) ‘ 𝑖 ) ) ↑ 2 ) ) ↔ ( ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 𝑦 ) ‘ 𝑖 ) − ( ( 2nd ‘ 𝑦 ) ‘ 𝑖 ) ) ↑ 2 ) ) ) ) |
| 14 |
13
|
rexbidv |
⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( ∃ 𝑛 ∈ ℕ ( ( 𝑥 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 𝑥 ) ‘ 𝑖 ) − ( ( 2nd ‘ 𝑥 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 𝑦 ) ‘ 𝑖 ) − ( ( 2nd ‘ 𝑦 ) ‘ 𝑖 ) ) ↑ 2 ) ) ↔ ∃ 𝑛 ∈ ℕ ( ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 𝑦 ) ‘ 𝑖 ) − ( ( 2nd ‘ 𝑦 ) ‘ 𝑖 ) ) ↑ 2 ) ) ) ) |
| 15 |
|
eleq1 |
⊢ ( 𝑦 = 〈 𝐶 , 𝐷 〉 → ( 𝑦 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ↔ 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ) |
| 16 |
15
|
anbi2d |
⊢ ( 𝑦 = 〈 𝐶 , 𝐷 〉 → ( ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ↔ ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ) ) |
| 17 |
|
fveq2 |
⊢ ( 𝑦 = 〈 𝐶 , 𝐷 〉 → ( 1st ‘ 𝑦 ) = ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ) |
| 18 |
17
|
fveq1d |
⊢ ( 𝑦 = 〈 𝐶 , 𝐷 〉 → ( ( 1st ‘ 𝑦 ) ‘ 𝑖 ) = ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) |
| 19 |
|
fveq2 |
⊢ ( 𝑦 = 〈 𝐶 , 𝐷 〉 → ( 2nd ‘ 𝑦 ) = ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ) |
| 20 |
19
|
fveq1d |
⊢ ( 𝑦 = 〈 𝐶 , 𝐷 〉 → ( ( 2nd ‘ 𝑦 ) ‘ 𝑖 ) = ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) |
| 21 |
18 20
|
oveq12d |
⊢ ( 𝑦 = 〈 𝐶 , 𝐷 〉 → ( ( ( 1st ‘ 𝑦 ) ‘ 𝑖 ) − ( ( 2nd ‘ 𝑦 ) ‘ 𝑖 ) ) = ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) ) |
| 22 |
21
|
oveq1d |
⊢ ( 𝑦 = 〈 𝐶 , 𝐷 〉 → ( ( ( ( 1st ‘ 𝑦 ) ‘ 𝑖 ) − ( ( 2nd ‘ 𝑦 ) ‘ 𝑖 ) ) ↑ 2 ) = ( ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) ↑ 2 ) ) |
| 23 |
22
|
sumeq2sdv |
⊢ ( 𝑦 = 〈 𝐶 , 𝐷 〉 → Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 𝑦 ) ‘ 𝑖 ) − ( ( 2nd ‘ 𝑦 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) ↑ 2 ) ) |
| 24 |
23
|
eqeq2d |
⊢ ( 𝑦 = 〈 𝐶 , 𝐷 〉 → ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 𝑦 ) ‘ 𝑖 ) − ( ( 2nd ‘ 𝑦 ) ‘ 𝑖 ) ) ↑ 2 ) ↔ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) ↑ 2 ) ) ) |
| 25 |
16 24
|
anbi12d |
⊢ ( 𝑦 = 〈 𝐶 , 𝐷 〉 → ( ( ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 𝑦 ) ‘ 𝑖 ) − ( ( 2nd ‘ 𝑦 ) ‘ 𝑖 ) ) ↑ 2 ) ) ↔ ( ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) ↑ 2 ) ) ) ) |
| 26 |
25
|
rexbidv |
⊢ ( 𝑦 = 〈 𝐶 , 𝐷 〉 → ( ∃ 𝑛 ∈ ℕ ( ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 𝑦 ) ‘ 𝑖 ) − ( ( 2nd ‘ 𝑦 ) ‘ 𝑖 ) ) ↑ 2 ) ) ↔ ∃ 𝑛 ∈ ℕ ( ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) ↑ 2 ) ) ) ) |
| 27 |
|
df-cgr |
⊢ Cgr = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑥 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 𝑥 ) ‘ 𝑖 ) − ( ( 2nd ‘ 𝑥 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 𝑦 ) ‘ 𝑖 ) − ( ( 2nd ‘ 𝑦 ) ‘ 𝑖 ) ) ↑ 2 ) ) } |
| 28 |
1 2 14 26 27
|
brab |
⊢ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐶 , 𝐷 〉 ↔ ∃ 𝑛 ∈ ℕ ( ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) ↑ 2 ) ) ) |
| 29 |
|
opelxp2 |
⊢ ( 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) → 𝐷 ∈ ( 𝔼 ‘ 𝑛 ) ) |
| 30 |
29
|
ad2antll |
⊢ ( ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ) → 𝐷 ∈ ( 𝔼 ‘ 𝑛 ) ) |
| 31 |
|
simplrr |
⊢ ( ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ) → 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) |
| 32 |
|
eedimeq |
⊢ ( ( 𝐷 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝑛 = 𝑁 ) |
| 33 |
30 31 32
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ) → 𝑛 = 𝑁 ) |
| 34 |
33
|
adantlr |
⊢ ( ( ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ) → 𝑛 = 𝑁 ) |
| 35 |
|
oveq2 |
⊢ ( 𝑛 = 𝑁 → ( 1 ... 𝑛 ) = ( 1 ... 𝑁 ) ) |
| 36 |
35
|
sumeq1d |
⊢ ( 𝑛 = 𝑁 → Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) ) |
| 37 |
35
|
sumeq1d |
⊢ ( 𝑛 = 𝑁 → Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) ↑ 2 ) ) |
| 38 |
36 37
|
eqeq12d |
⊢ ( 𝑛 = 𝑁 → ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) ↑ 2 ) ↔ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) ↑ 2 ) ) ) |
| 39 |
34 38
|
syl |
⊢ ( ( ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ) → ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) ↑ 2 ) ↔ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) ↑ 2 ) ) ) |
| 40 |
|
op1stg |
⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐴 ) |
| 41 |
40
|
fveq1d |
⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) = ( 𝐴 ‘ 𝑖 ) ) |
| 42 |
|
op2ndg |
⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐵 ) |
| 43 |
42
|
fveq1d |
⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) = ( 𝐵 ‘ 𝑖 ) ) |
| 44 |
41 43
|
oveq12d |
⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) = ( ( 𝐴 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑖 ) ) ) |
| 45 |
44
|
oveq1d |
⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = ( ( ( 𝐴 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑖 ) ) ↑ 2 ) ) |
| 46 |
45
|
sumeq2sdv |
⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑖 ) ) ↑ 2 ) ) |
| 47 |
|
op1stg |
⊢ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) = 𝐶 ) |
| 48 |
47
|
fveq1d |
⊢ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) = ( 𝐶 ‘ 𝑖 ) ) |
| 49 |
|
op2ndg |
⊢ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) = 𝐷 ) |
| 50 |
49
|
fveq1d |
⊢ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) = ( 𝐷 ‘ 𝑖 ) ) |
| 51 |
48 50
|
oveq12d |
⊢ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) = ( ( 𝐶 ‘ 𝑖 ) − ( 𝐷 ‘ 𝑖 ) ) ) |
| 52 |
51
|
oveq1d |
⊢ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = ( ( ( 𝐶 ‘ 𝑖 ) − ( 𝐷 ‘ 𝑖 ) ) ↑ 2 ) ) |
| 53 |
52
|
sumeq2sdv |
⊢ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) → Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐶 ‘ 𝑖 ) − ( 𝐷 ‘ 𝑖 ) ) ↑ 2 ) ) |
| 54 |
46 53
|
eqeqan12d |
⊢ ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) ↑ 2 ) ↔ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐶 ‘ 𝑖 ) − ( 𝐷 ‘ 𝑖 ) ) ↑ 2 ) ) ) |
| 55 |
54
|
ad2antrr |
⊢ ( ( ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ) → ( Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) ↑ 2 ) ↔ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐶 ‘ 𝑖 ) − ( 𝐷 ‘ 𝑖 ) ) ↑ 2 ) ) ) |
| 56 |
39 55
|
bitrd |
⊢ ( ( ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ) → ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) ↑ 2 ) ↔ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐶 ‘ 𝑖 ) − ( 𝐷 ‘ 𝑖 ) ) ↑ 2 ) ) ) |
| 57 |
56
|
biimpd |
⊢ ( ( ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ) → ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) ↑ 2 ) → Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐶 ‘ 𝑖 ) − ( 𝐷 ‘ 𝑖 ) ) ↑ 2 ) ) ) |
| 58 |
57
|
expimpd |
⊢ ( ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑛 ∈ ℕ ) → ( ( ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) ↑ 2 ) ) → Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐶 ‘ 𝑖 ) − ( 𝐷 ‘ 𝑖 ) ) ↑ 2 ) ) ) |
| 59 |
58
|
rexlimdva |
⊢ ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ∃ 𝑛 ∈ ℕ ( ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) ↑ 2 ) ) → Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐶 ‘ 𝑖 ) − ( 𝐷 ‘ 𝑖 ) ) ↑ 2 ) ) ) |
| 60 |
|
eleenn |
⊢ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) → 𝑁 ∈ ℕ ) |
| 61 |
60
|
ad2antll |
⊢ ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝑁 ∈ ℕ ) |
| 62 |
|
opelxpi |
⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) ) |
| 63 |
|
opelxpi |
⊢ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) → 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) ) |
| 64 |
62 63
|
anim12i |
⊢ ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) ) ) |
| 65 |
64
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐶 ‘ 𝑖 ) − ( 𝐷 ‘ 𝑖 ) ) ↑ 2 ) ) → ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) ) ) |
| 66 |
54
|
biimpar |
⊢ ( ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐶 ‘ 𝑖 ) − ( 𝐷 ‘ 𝑖 ) ) ↑ 2 ) ) → Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) ↑ 2 ) ) |
| 67 |
65 66
|
jca |
⊢ ( ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐶 ‘ 𝑖 ) − ( 𝐷 ‘ 𝑖 ) ) ↑ 2 ) ) → ( ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) ↑ 2 ) ) ) |
| 68 |
|
fveq2 |
⊢ ( 𝑛 = 𝑁 → ( 𝔼 ‘ 𝑛 ) = ( 𝔼 ‘ 𝑁 ) ) |
| 69 |
68
|
sqxpeqd |
⊢ ( 𝑛 = 𝑁 → ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) = ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) ) |
| 70 |
69
|
eleq2d |
⊢ ( 𝑛 = 𝑁 → ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ↔ 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) ) ) |
| 71 |
69
|
eleq2d |
⊢ ( 𝑛 = 𝑁 → ( 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ↔ 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) ) ) |
| 72 |
70 71
|
anbi12d |
⊢ ( 𝑛 = 𝑁 → ( ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ↔ ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) ) ) ) |
| 73 |
72 38
|
anbi12d |
⊢ ( 𝑛 = 𝑁 → ( ( ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) ↑ 2 ) ) ↔ ( ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) ↑ 2 ) ) ) ) |
| 74 |
73
|
rspcev |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) ↑ 2 ) ) ) → ∃ 𝑛 ∈ ℕ ( ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) ↑ 2 ) ) ) |
| 75 |
67 74
|
sylan2 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐶 ‘ 𝑖 ) − ( 𝐷 ‘ 𝑖 ) ) ↑ 2 ) ) ) → ∃ 𝑛 ∈ ℕ ( ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) ↑ 2 ) ) ) |
| 76 |
75
|
exp32 |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐶 ‘ 𝑖 ) − ( 𝐷 ‘ 𝑖 ) ) ↑ 2 ) → ∃ 𝑛 ∈ ℕ ( ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) ↑ 2 ) ) ) ) ) |
| 77 |
61 76
|
mpcom |
⊢ ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐶 ‘ 𝑖 ) − ( 𝐷 ‘ 𝑖 ) ) ↑ 2 ) → ∃ 𝑛 ∈ ℕ ( ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) ↑ 2 ) ) ) ) |
| 78 |
59 77
|
impbid |
⊢ ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ∃ 𝑛 ∈ ℕ ( ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) ↑ 2 ) ) ↔ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐶 ‘ 𝑖 ) − ( 𝐷 ‘ 𝑖 ) ) ↑ 2 ) ) ) |
| 79 |
28 78
|
bitrid |
⊢ ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐶 , 𝐷 〉 ↔ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐶 ‘ 𝑖 ) − ( 𝐷 ‘ 𝑖 ) ) ↑ 2 ) ) ) |