Step |
Hyp |
Ref |
Expression |
1 |
|
cic.i |
⊢ 𝐼 = ( Iso ‘ 𝐶 ) |
2 |
|
cic.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
3 |
|
cic.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
4 |
|
cic.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
5 |
|
cic.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
6 |
|
cicfval |
⊢ ( 𝐶 ∈ Cat → ( ≃𝑐 ‘ 𝐶 ) = ( ( Iso ‘ 𝐶 ) supp ∅ ) ) |
7 |
3 6
|
syl |
⊢ ( 𝜑 → ( ≃𝑐 ‘ 𝐶 ) = ( ( Iso ‘ 𝐶 ) supp ∅ ) ) |
8 |
7
|
breqd |
⊢ ( 𝜑 → ( 𝑋 ( ≃𝑐 ‘ 𝐶 ) 𝑌 ↔ 𝑋 ( ( Iso ‘ 𝐶 ) supp ∅ ) 𝑌 ) ) |
9 |
|
df-br |
⊢ ( 𝑋 ( ( Iso ‘ 𝐶 ) supp ∅ ) 𝑌 ↔ 〈 𝑋 , 𝑌 〉 ∈ ( ( Iso ‘ 𝐶 ) supp ∅ ) ) |
10 |
9
|
a1i |
⊢ ( 𝜑 → ( 𝑋 ( ( Iso ‘ 𝐶 ) supp ∅ ) 𝑌 ↔ 〈 𝑋 , 𝑌 〉 ∈ ( ( Iso ‘ 𝐶 ) supp ∅ ) ) ) |
11 |
1
|
a1i |
⊢ ( 𝜑 → 𝐼 = ( Iso ‘ 𝐶 ) ) |
12 |
11
|
fveq1d |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝑌 〉 ) = ( ( Iso ‘ 𝐶 ) ‘ 〈 𝑋 , 𝑌 〉 ) ) |
13 |
12
|
neeq1d |
⊢ ( 𝜑 → ( ( 𝐼 ‘ 〈 𝑋 , 𝑌 〉 ) ≠ ∅ ↔ ( ( Iso ‘ 𝐶 ) ‘ 〈 𝑋 , 𝑌 〉 ) ≠ ∅ ) ) |
14 |
|
df-ov |
⊢ ( 𝑋 𝐼 𝑌 ) = ( 𝐼 ‘ 〈 𝑋 , 𝑌 〉 ) |
15 |
14
|
eqcomi |
⊢ ( 𝐼 ‘ 〈 𝑋 , 𝑌 〉 ) = ( 𝑋 𝐼 𝑌 ) |
16 |
15
|
a1i |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝑌 〉 ) = ( 𝑋 𝐼 𝑌 ) ) |
17 |
16
|
neeq1d |
⊢ ( 𝜑 → ( ( 𝐼 ‘ 〈 𝑋 , 𝑌 〉 ) ≠ ∅ ↔ ( 𝑋 𝐼 𝑌 ) ≠ ∅ ) ) |
18 |
|
fvexd |
⊢ ( 𝜑 → ( Base ‘ 𝐶 ) ∈ V ) |
19 |
18 18
|
xpexd |
⊢ ( 𝜑 → ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∈ V ) |
20 |
4 2
|
eleqtrdi |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
21 |
5 2
|
eleqtrdi |
⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝐶 ) ) |
22 |
20 21
|
opelxpd |
⊢ ( 𝜑 → 〈 𝑋 , 𝑌 〉 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) |
23 |
|
isofn |
⊢ ( 𝐶 ∈ Cat → ( Iso ‘ 𝐶 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) |
24 |
3 23
|
syl |
⊢ ( 𝜑 → ( Iso ‘ 𝐶 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) |
25 |
|
fvn0elsuppb |
⊢ ( ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∈ V ∧ 〈 𝑋 , 𝑌 〉 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ ( Iso ‘ 𝐶 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) → ( ( ( Iso ‘ 𝐶 ) ‘ 〈 𝑋 , 𝑌 〉 ) ≠ ∅ ↔ 〈 𝑋 , 𝑌 〉 ∈ ( ( Iso ‘ 𝐶 ) supp ∅ ) ) ) |
26 |
19 22 24 25
|
syl3anc |
⊢ ( 𝜑 → ( ( ( Iso ‘ 𝐶 ) ‘ 〈 𝑋 , 𝑌 〉 ) ≠ ∅ ↔ 〈 𝑋 , 𝑌 〉 ∈ ( ( Iso ‘ 𝐶 ) supp ∅ ) ) ) |
27 |
13 17 26
|
3bitr3rd |
⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 ∈ ( ( Iso ‘ 𝐶 ) supp ∅ ) ↔ ( 𝑋 𝐼 𝑌 ) ≠ ∅ ) ) |
28 |
8 10 27
|
3bitrd |
⊢ ( 𝜑 → ( 𝑋 ( ≃𝑐 ‘ 𝐶 ) 𝑌 ↔ ( 𝑋 𝐼 𝑌 ) ≠ ∅ ) ) |