| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cic.i | ⊢ 𝐼  =  ( Iso ‘ 𝐶 ) | 
						
							| 2 |  | cic.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 3 |  | cic.c | ⊢ ( 𝜑  →  𝐶  ∈  Cat ) | 
						
							| 4 |  | cic.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 5 |  | cic.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 6 |  | cicfval | ⊢ ( 𝐶  ∈  Cat  →  (  ≃𝑐  ‘ 𝐶 )  =  ( ( Iso ‘ 𝐶 )  supp  ∅ ) ) | 
						
							| 7 | 3 6 | syl | ⊢ ( 𝜑  →  (  ≃𝑐  ‘ 𝐶 )  =  ( ( Iso ‘ 𝐶 )  supp  ∅ ) ) | 
						
							| 8 | 7 | breqd | ⊢ ( 𝜑  →  ( 𝑋 (  ≃𝑐  ‘ 𝐶 ) 𝑌  ↔  𝑋 ( ( Iso ‘ 𝐶 )  supp  ∅ ) 𝑌 ) ) | 
						
							| 9 |  | df-br | ⊢ ( 𝑋 ( ( Iso ‘ 𝐶 )  supp  ∅ ) 𝑌  ↔  〈 𝑋 ,  𝑌 〉  ∈  ( ( Iso ‘ 𝐶 )  supp  ∅ ) ) | 
						
							| 10 | 9 | a1i | ⊢ ( 𝜑  →  ( 𝑋 ( ( Iso ‘ 𝐶 )  supp  ∅ ) 𝑌  ↔  〈 𝑋 ,  𝑌 〉  ∈  ( ( Iso ‘ 𝐶 )  supp  ∅ ) ) ) | 
						
							| 11 | 1 | a1i | ⊢ ( 𝜑  →  𝐼  =  ( Iso ‘ 𝐶 ) ) | 
						
							| 12 | 11 | fveq1d | ⊢ ( 𝜑  →  ( 𝐼 ‘ 〈 𝑋 ,  𝑌 〉 )  =  ( ( Iso ‘ 𝐶 ) ‘ 〈 𝑋 ,  𝑌 〉 ) ) | 
						
							| 13 | 12 | neeq1d | ⊢ ( 𝜑  →  ( ( 𝐼 ‘ 〈 𝑋 ,  𝑌 〉 )  ≠  ∅  ↔  ( ( Iso ‘ 𝐶 ) ‘ 〈 𝑋 ,  𝑌 〉 )  ≠  ∅ ) ) | 
						
							| 14 |  | df-ov | ⊢ ( 𝑋 𝐼 𝑌 )  =  ( 𝐼 ‘ 〈 𝑋 ,  𝑌 〉 ) | 
						
							| 15 | 14 | eqcomi | ⊢ ( 𝐼 ‘ 〈 𝑋 ,  𝑌 〉 )  =  ( 𝑋 𝐼 𝑌 ) | 
						
							| 16 | 15 | a1i | ⊢ ( 𝜑  →  ( 𝐼 ‘ 〈 𝑋 ,  𝑌 〉 )  =  ( 𝑋 𝐼 𝑌 ) ) | 
						
							| 17 | 16 | neeq1d | ⊢ ( 𝜑  →  ( ( 𝐼 ‘ 〈 𝑋 ,  𝑌 〉 )  ≠  ∅  ↔  ( 𝑋 𝐼 𝑌 )  ≠  ∅ ) ) | 
						
							| 18 |  | fvexd | ⊢ ( 𝜑  →  ( Base ‘ 𝐶 )  ∈  V ) | 
						
							| 19 | 18 18 | xpexd | ⊢ ( 𝜑  →  ( ( Base ‘ 𝐶 )  ×  ( Base ‘ 𝐶 ) )  ∈  V ) | 
						
							| 20 | 4 2 | eleqtrdi | ⊢ ( 𝜑  →  𝑋  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 21 | 5 2 | eleqtrdi | ⊢ ( 𝜑  →  𝑌  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 22 | 20 21 | opelxpd | ⊢ ( 𝜑  →  〈 𝑋 ,  𝑌 〉  ∈  ( ( Base ‘ 𝐶 )  ×  ( Base ‘ 𝐶 ) ) ) | 
						
							| 23 |  | isofn | ⊢ ( 𝐶  ∈  Cat  →  ( Iso ‘ 𝐶 )  Fn  ( ( Base ‘ 𝐶 )  ×  ( Base ‘ 𝐶 ) ) ) | 
						
							| 24 | 3 23 | syl | ⊢ ( 𝜑  →  ( Iso ‘ 𝐶 )  Fn  ( ( Base ‘ 𝐶 )  ×  ( Base ‘ 𝐶 ) ) ) | 
						
							| 25 |  | fvn0elsuppb | ⊢ ( ( ( ( Base ‘ 𝐶 )  ×  ( Base ‘ 𝐶 ) )  ∈  V  ∧  〈 𝑋 ,  𝑌 〉  ∈  ( ( Base ‘ 𝐶 )  ×  ( Base ‘ 𝐶 ) )  ∧  ( Iso ‘ 𝐶 )  Fn  ( ( Base ‘ 𝐶 )  ×  ( Base ‘ 𝐶 ) ) )  →  ( ( ( Iso ‘ 𝐶 ) ‘ 〈 𝑋 ,  𝑌 〉 )  ≠  ∅  ↔  〈 𝑋 ,  𝑌 〉  ∈  ( ( Iso ‘ 𝐶 )  supp  ∅ ) ) ) | 
						
							| 26 | 19 22 24 25 | syl3anc | ⊢ ( 𝜑  →  ( ( ( Iso ‘ 𝐶 ) ‘ 〈 𝑋 ,  𝑌 〉 )  ≠  ∅  ↔  〈 𝑋 ,  𝑌 〉  ∈  ( ( Iso ‘ 𝐶 )  supp  ∅ ) ) ) | 
						
							| 27 | 13 17 26 | 3bitr3rd | ⊢ ( 𝜑  →  ( 〈 𝑋 ,  𝑌 〉  ∈  ( ( Iso ‘ 𝐶 )  supp  ∅ )  ↔  ( 𝑋 𝐼 𝑌 )  ≠  ∅ ) ) | 
						
							| 28 | 8 10 27 | 3bitrd | ⊢ ( 𝜑  →  ( 𝑋 (  ≃𝑐  ‘ 𝐶 ) 𝑌  ↔  ( 𝑋 𝐼 𝑌 )  ≠  ∅ ) ) |