Metamath Proof Explorer
Description: The converse of a binary relation swaps arguments. Theorem 11 of
Suppes p. 61. (Contributed by NM, 13-Aug-1995)
|
|
Ref |
Expression |
|
Hypotheses |
opelcnv.1 |
⊢ 𝐴 ∈ V |
|
|
opelcnv.2 |
⊢ 𝐵 ∈ V |
|
Assertion |
brcnv |
⊢ ( 𝐴 ◡ 𝑅 𝐵 ↔ 𝐵 𝑅 𝐴 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
opelcnv.1 |
⊢ 𝐴 ∈ V |
2 |
|
opelcnv.2 |
⊢ 𝐵 ∈ V |
3 |
|
brcnvg |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 ◡ 𝑅 𝐵 ↔ 𝐵 𝑅 𝐴 ) ) |
4 |
1 2 3
|
mp2an |
⊢ ( 𝐴 ◡ 𝑅 𝐵 ↔ 𝐵 𝑅 𝐴 ) |