Metamath Proof Explorer


Theorem brcnvg

Description: The converse of a binary relation swaps arguments. Theorem 11 of Suppes p. 61. (Contributed by NM, 10-Oct-2005)

Ref Expression
Assertion brcnvg ( ( 𝐴𝐶𝐵𝐷 ) → ( 𝐴 𝑅 𝐵𝐵 𝑅 𝐴 ) )

Proof

Step Hyp Ref Expression
1 breq2 ( 𝑥 = 𝐴 → ( 𝑦 𝑅 𝑥𝑦 𝑅 𝐴 ) )
2 breq1 ( 𝑦 = 𝐵 → ( 𝑦 𝑅 𝐴𝐵 𝑅 𝐴 ) )
3 df-cnv 𝑅 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑦 𝑅 𝑥 }
4 1 2 3 brabg ( ( 𝐴𝐶𝐵𝐷 ) → ( 𝐴 𝑅 𝐵𝐵 𝑅 𝐴 ) )