Description: The converse of a binary relation swaps arguments. Theorem 11 of Suppes p. 61. (Contributed by NM, 10-Oct-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | brcnvg | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( 𝐴 ◡ 𝑅 𝐵 ↔ 𝐵 𝑅 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝑦 𝑅 𝑥 ↔ 𝑦 𝑅 𝐴 ) ) | |
2 | breq1 | ⊢ ( 𝑦 = 𝐵 → ( 𝑦 𝑅 𝐴 ↔ 𝐵 𝑅 𝐴 ) ) | |
3 | df-cnv | ⊢ ◡ 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ 𝑦 𝑅 𝑥 } | |
4 | 1 2 3 | brabg | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( 𝐴 ◡ 𝑅 𝐵 ↔ 𝐵 𝑅 𝐴 ) ) |