Metamath Proof Explorer


Theorem brcnvin

Description: Intersection with a converse, binary relation. (Contributed by Peter Mazsa, 24-Mar-2024)

Ref Expression
Assertion brcnvin ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴 ( 𝑅 𝑆 ) 𝐵 ↔ ( 𝐴 𝑅 𝐵𝐵 𝑆 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 brin ( 𝐴 ( 𝑅 𝑆 ) 𝐵 ↔ ( 𝐴 𝑅 𝐵𝐴 𝑆 𝐵 ) )
2 brcnvg ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴 𝑆 𝐵𝐵 𝑆 𝐴 ) )
3 2 anbi2d ( ( 𝐴𝑉𝐵𝑊 ) → ( ( 𝐴 𝑅 𝐵𝐴 𝑆 𝐵 ) ↔ ( 𝐴 𝑅 𝐵𝐵 𝑆 𝐴 ) ) )
4 1 3 bitrid ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴 ( 𝑅 𝑆 ) 𝐵 ↔ ( 𝐴 𝑅 𝐵𝐵 𝑆 𝐴 ) ) )