Description: Intersection with a converse, binary relation. (Contributed by Peter Mazsa, 24-Mar-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | brcnvin | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ( 𝑅 ∩ ◡ 𝑆 ) 𝐵 ↔ ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑆 𝐴 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brin | ⊢ ( 𝐴 ( 𝑅 ∩ ◡ 𝑆 ) 𝐵 ↔ ( 𝐴 𝑅 𝐵 ∧ 𝐴 ◡ 𝑆 𝐵 ) ) | |
2 | brcnvg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ◡ 𝑆 𝐵 ↔ 𝐵 𝑆 𝐴 ) ) | |
3 | 2 | anbi2d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝐴 𝑅 𝐵 ∧ 𝐴 ◡ 𝑆 𝐵 ) ↔ ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑆 𝐴 ) ) ) |
4 | 1 3 | bitrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ( 𝑅 ∩ ◡ 𝑆 ) 𝐵 ↔ ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑆 𝐴 ) ) ) |