Description: The converse of a subset relation swaps arguments. (Contributed by Peter Mazsa, 1-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brcnvssr | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ◡ S 𝐵 ↔ 𝐵 ⊆ 𝐴 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | relssr | ⊢ Rel S | |
| 2 | 1 | relbrcnv | ⊢ ( 𝐴 ◡ S 𝐵 ↔ 𝐵 S 𝐴 ) | 
| 3 | brssr | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐵 S 𝐴 ↔ 𝐵 ⊆ 𝐴 ) ) | |
| 4 | 2 3 | bitrid | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ◡ S 𝐵 ↔ 𝐵 ⊆ 𝐴 ) ) |