Metamath Proof Explorer
Description: Binary relation on a composition. (Contributed by NM, 21-Sep-2004)
(Revised by Mario Carneiro, 24-Feb-2015)
|
|
Ref |
Expression |
|
Hypotheses |
opelco.1 |
⊢ 𝐴 ∈ V |
|
|
opelco.2 |
⊢ 𝐵 ∈ V |
|
Assertion |
brco |
⊢ ( 𝐴 ( 𝐶 ∘ 𝐷 ) 𝐵 ↔ ∃ 𝑥 ( 𝐴 𝐷 𝑥 ∧ 𝑥 𝐶 𝐵 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
opelco.1 |
⊢ 𝐴 ∈ V |
2 |
|
opelco.2 |
⊢ 𝐵 ∈ V |
3 |
|
brcog |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 ( 𝐶 ∘ 𝐷 ) 𝐵 ↔ ∃ 𝑥 ( 𝐴 𝐷 𝑥 ∧ 𝑥 𝐶 𝐵 ) ) ) |
4 |
1 2 3
|
mp2an |
⊢ ( 𝐴 ( 𝐶 ∘ 𝐷 ) 𝐵 ↔ ∃ 𝑥 ( 𝐴 𝐷 𝑥 ∧ 𝑥 𝐶 𝐵 ) ) |