Step |
Hyp |
Ref |
Expression |
1 |
|
3simpa |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑋 ∈ 𝑍 ) → ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ) |
2 |
|
breq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐴 𝐷 𝑥 ↔ 𝐴 𝐷 𝑋 ) ) |
3 |
|
breq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 𝐶 𝐵 ↔ 𝑋 𝐶 𝐵 ) ) |
4 |
2 3
|
anbi12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝐴 𝐷 𝑥 ∧ 𝑥 𝐶 𝐵 ) ↔ ( 𝐴 𝐷 𝑋 ∧ 𝑋 𝐶 𝐵 ) ) ) |
5 |
4
|
spcegv |
⊢ ( 𝑋 ∈ 𝑍 → ( ( 𝐴 𝐷 𝑋 ∧ 𝑋 𝐶 𝐵 ) → ∃ 𝑥 ( 𝐴 𝐷 𝑥 ∧ 𝑥 𝐶 𝐵 ) ) ) |
6 |
5
|
imp |
⊢ ( ( 𝑋 ∈ 𝑍 ∧ ( 𝐴 𝐷 𝑋 ∧ 𝑋 𝐶 𝐵 ) ) → ∃ 𝑥 ( 𝐴 𝐷 𝑥 ∧ 𝑥 𝐶 𝐵 ) ) |
7 |
6
|
3ad2antl3 |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑋 ∈ 𝑍 ) ∧ ( 𝐴 𝐷 𝑋 ∧ 𝑋 𝐶 𝐵 ) ) → ∃ 𝑥 ( 𝐴 𝐷 𝑥 ∧ 𝑥 𝐶 𝐵 ) ) |
8 |
|
brcog |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ( 𝐶 ∘ 𝐷 ) 𝐵 ↔ ∃ 𝑥 ( 𝐴 𝐷 𝑥 ∧ 𝑥 𝐶 𝐵 ) ) ) |
9 |
8
|
biimpar |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ∃ 𝑥 ( 𝐴 𝐷 𝑥 ∧ 𝑥 𝐶 𝐵 ) ) → 𝐴 ( 𝐶 ∘ 𝐷 ) 𝐵 ) |
10 |
1 7 9
|
syl2an2r |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑋 ∈ 𝑍 ) ∧ ( 𝐴 𝐷 𝑋 ∧ 𝑋 𝐶 𝐵 ) ) → 𝐴 ( 𝐶 ∘ 𝐷 ) 𝐵 ) |