Metamath Proof Explorer


Theorem brcogw

Description: Ordered pair membership in a composition. (Contributed by Thierry Arnoux, 14-Jan-2018)

Ref Expression
Assertion brcogw ( ( ( 𝐴𝑉𝐵𝑊𝑋𝑍 ) ∧ ( 𝐴 𝐷 𝑋𝑋 𝐶 𝐵 ) ) → 𝐴 ( 𝐶𝐷 ) 𝐵 )

Proof

Step Hyp Ref Expression
1 3simpa ( ( 𝐴𝑉𝐵𝑊𝑋𝑍 ) → ( 𝐴𝑉𝐵𝑊 ) )
2 breq2 ( 𝑥 = 𝑋 → ( 𝐴 𝐷 𝑥𝐴 𝐷 𝑋 ) )
3 breq1 ( 𝑥 = 𝑋 → ( 𝑥 𝐶 𝐵𝑋 𝐶 𝐵 ) )
4 2 3 anbi12d ( 𝑥 = 𝑋 → ( ( 𝐴 𝐷 𝑥𝑥 𝐶 𝐵 ) ↔ ( 𝐴 𝐷 𝑋𝑋 𝐶 𝐵 ) ) )
5 4 spcegv ( 𝑋𝑍 → ( ( 𝐴 𝐷 𝑋𝑋 𝐶 𝐵 ) → ∃ 𝑥 ( 𝐴 𝐷 𝑥𝑥 𝐶 𝐵 ) ) )
6 5 imp ( ( 𝑋𝑍 ∧ ( 𝐴 𝐷 𝑋𝑋 𝐶 𝐵 ) ) → ∃ 𝑥 ( 𝐴 𝐷 𝑥𝑥 𝐶 𝐵 ) )
7 6 3ad2antl3 ( ( ( 𝐴𝑉𝐵𝑊𝑋𝑍 ) ∧ ( 𝐴 𝐷 𝑋𝑋 𝐶 𝐵 ) ) → ∃ 𝑥 ( 𝐴 𝐷 𝑥𝑥 𝐶 𝐵 ) )
8 brcog ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴 ( 𝐶𝐷 ) 𝐵 ↔ ∃ 𝑥 ( 𝐴 𝐷 𝑥𝑥 𝐶 𝐵 ) ) )
9 8 biimpar ( ( ( 𝐴𝑉𝐵𝑊 ) ∧ ∃ 𝑥 ( 𝐴 𝐷 𝑥𝑥 𝐶 𝐵 ) ) → 𝐴 ( 𝐶𝐷 ) 𝐵 )
10 1 7 9 syl2an2r ( ( ( 𝐴𝑉𝐵𝑊𝑋𝑍 ) ∧ ( 𝐴 𝐷 𝑋𝑋 𝐶 𝐵 ) ) → 𝐴 ( 𝐶𝐷 ) 𝐵 )