| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 3simpa | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝑋  ∈  𝑍 )  →  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 ) ) | 
						
							| 2 |  | breq2 | ⊢ ( 𝑥  =  𝑋  →  ( 𝐴 𝐷 𝑥  ↔  𝐴 𝐷 𝑋 ) ) | 
						
							| 3 |  | breq1 | ⊢ ( 𝑥  =  𝑋  →  ( 𝑥 𝐶 𝐵  ↔  𝑋 𝐶 𝐵 ) ) | 
						
							| 4 | 2 3 | anbi12d | ⊢ ( 𝑥  =  𝑋  →  ( ( 𝐴 𝐷 𝑥  ∧  𝑥 𝐶 𝐵 )  ↔  ( 𝐴 𝐷 𝑋  ∧  𝑋 𝐶 𝐵 ) ) ) | 
						
							| 5 | 4 | spcegv | ⊢ ( 𝑋  ∈  𝑍  →  ( ( 𝐴 𝐷 𝑋  ∧  𝑋 𝐶 𝐵 )  →  ∃ 𝑥 ( 𝐴 𝐷 𝑥  ∧  𝑥 𝐶 𝐵 ) ) ) | 
						
							| 6 | 5 | imp | ⊢ ( ( 𝑋  ∈  𝑍  ∧  ( 𝐴 𝐷 𝑋  ∧  𝑋 𝐶 𝐵 ) )  →  ∃ 𝑥 ( 𝐴 𝐷 𝑥  ∧  𝑥 𝐶 𝐵 ) ) | 
						
							| 7 | 6 | 3ad2antl3 | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝑋  ∈  𝑍 )  ∧  ( 𝐴 𝐷 𝑋  ∧  𝑋 𝐶 𝐵 ) )  →  ∃ 𝑥 ( 𝐴 𝐷 𝑥  ∧  𝑥 𝐶 𝐵 ) ) | 
						
							| 8 |  | brcog | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  ( 𝐴 ( 𝐶  ∘  𝐷 ) 𝐵  ↔  ∃ 𝑥 ( 𝐴 𝐷 𝑥  ∧  𝑥 𝐶 𝐵 ) ) ) | 
						
							| 9 | 8 | biimpar | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  ∧  ∃ 𝑥 ( 𝐴 𝐷 𝑥  ∧  𝑥 𝐶 𝐵 ) )  →  𝐴 ( 𝐶  ∘  𝐷 ) 𝐵 ) | 
						
							| 10 | 1 7 9 | syl2an2r | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝑋  ∈  𝑍 )  ∧  ( 𝐴 𝐷 𝑋  ∧  𝑋 𝐶 𝐵 ) )  →  𝐴 ( 𝐶  ∘  𝐷 ) 𝐵 ) |