Metamath Proof Explorer


Theorem brdifun

Description: Evaluate the incomparability relation. (Contributed by Mario Carneiro, 9-Jul-2014)

Ref Expression
Hypothesis swoer.1 𝑅 = ( ( 𝑋 × 𝑋 ) ∖ ( < < ) )
Assertion brdifun ( ( 𝐴𝑋𝐵𝑋 ) → ( 𝐴 𝑅 𝐵 ↔ ¬ ( 𝐴 < 𝐵𝐵 < 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 swoer.1 𝑅 = ( ( 𝑋 × 𝑋 ) ∖ ( < < ) )
2 opelxpi ( ( 𝐴𝑋𝐵𝑋 ) → ⟨ 𝐴 , 𝐵 ⟩ ∈ ( 𝑋 × 𝑋 ) )
3 df-br ( 𝐴 ( 𝑋 × 𝑋 ) 𝐵 ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ ( 𝑋 × 𝑋 ) )
4 2 3 sylibr ( ( 𝐴𝑋𝐵𝑋 ) → 𝐴 ( 𝑋 × 𝑋 ) 𝐵 )
5 1 breqi ( 𝐴 𝑅 𝐵𝐴 ( ( 𝑋 × 𝑋 ) ∖ ( < < ) ) 𝐵 )
6 brdif ( 𝐴 ( ( 𝑋 × 𝑋 ) ∖ ( < < ) ) 𝐵 ↔ ( 𝐴 ( 𝑋 × 𝑋 ) 𝐵 ∧ ¬ 𝐴 ( < < ) 𝐵 ) )
7 5 6 bitri ( 𝐴 𝑅 𝐵 ↔ ( 𝐴 ( 𝑋 × 𝑋 ) 𝐵 ∧ ¬ 𝐴 ( < < ) 𝐵 ) )
8 7 baib ( 𝐴 ( 𝑋 × 𝑋 ) 𝐵 → ( 𝐴 𝑅 𝐵 ↔ ¬ 𝐴 ( < < ) 𝐵 ) )
9 4 8 syl ( ( 𝐴𝑋𝐵𝑋 ) → ( 𝐴 𝑅 𝐵 ↔ ¬ 𝐴 ( < < ) 𝐵 ) )
10 brun ( 𝐴 ( < < ) 𝐵 ↔ ( 𝐴 < 𝐵𝐴 < 𝐵 ) )
11 brcnvg ( ( 𝐴𝑋𝐵𝑋 ) → ( 𝐴 < 𝐵𝐵 < 𝐴 ) )
12 11 orbi2d ( ( 𝐴𝑋𝐵𝑋 ) → ( ( 𝐴 < 𝐵𝐴 < 𝐵 ) ↔ ( 𝐴 < 𝐵𝐵 < 𝐴 ) ) )
13 10 12 syl5bb ( ( 𝐴𝑋𝐵𝑋 ) → ( 𝐴 ( < < ) 𝐵 ↔ ( 𝐴 < 𝐵𝐵 < 𝐴 ) ) )
14 13 notbid ( ( 𝐴𝑋𝐵𝑋 ) → ( ¬ 𝐴 ( < < ) 𝐵 ↔ ¬ ( 𝐴 < 𝐵𝐵 < 𝐴 ) ) )
15 9 14 bitrd ( ( 𝐴𝑋𝐵𝑋 ) → ( 𝐴 𝑅 𝐵 ↔ ¬ ( 𝐴 < 𝐵𝐵 < 𝐴 ) ) )