Metamath Proof Explorer


Theorem brdom

Description: Dominance relation. (Contributed by NM, 15-Jun-1998)

Ref Expression
Hypothesis bren.1 𝐵 ∈ V
Assertion brdom ( 𝐴𝐵 ↔ ∃ 𝑓 𝑓 : 𝐴1-1𝐵 )

Proof

Step Hyp Ref Expression
1 bren.1 𝐵 ∈ V
2 brdomg ( 𝐵 ∈ V → ( 𝐴𝐵 ↔ ∃ 𝑓 𝑓 : 𝐴1-1𝐵 ) )
3 1 2 ax-mp ( 𝐴𝐵 ↔ ∃ 𝑓 𝑓 : 𝐴1-1𝐵 )