Metamath Proof Explorer


Theorem brdom2

Description: Dominance in terms of strict dominance and equinumerosity. Theorem 22(iv) of Suppes p. 97. (Contributed by NM, 17-Jun-1998)

Ref Expression
Assertion brdom2 ( 𝐴𝐵 ↔ ( 𝐴𝐵𝐴𝐵 ) )

Proof

Step Hyp Ref Expression
1 dfdom2 ≼ = ( ≺ ∪ ≈ )
2 1 eleq2i ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ≼ ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ≺ ∪ ≈ ) )
3 df-br ( 𝐴𝐵 ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ ≼ )
4 df-br ( 𝐴𝐵 ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ ≺ )
5 df-br ( 𝐴𝐵 ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ ≈ )
6 4 5 orbi12i ( ( 𝐴𝐵𝐴𝐵 ) ↔ ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ≺ ∨ ⟨ 𝐴 , 𝐵 ⟩ ∈ ≈ ) )
7 elun ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ≺ ∪ ≈ ) ↔ ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ≺ ∨ ⟨ 𝐴 , 𝐵 ⟩ ∈ ≈ ) )
8 6 7 bitr4i ( ( 𝐴𝐵𝐴𝐵 ) ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ≺ ∪ ≈ ) )
9 2 3 8 3bitr4i ( 𝐴𝐵 ↔ ( 𝐴𝐵𝐴𝐵 ) )