Description: Dominance in terms of strict dominance and equinumerosity. Theorem 22(iv) of Suppes p. 97. (Contributed by NM, 17-Jun-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brdom2 | ⊢ ( 𝐴 ≼ 𝐵 ↔ ( 𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdom2 | ⊢ ≼ = ( ≺ ∪ ≈ ) | |
| 2 | 1 | eleq2i | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ≼ ↔ 〈 𝐴 , 𝐵 〉 ∈ ( ≺ ∪ ≈ ) ) |
| 3 | df-br | ⊢ ( 𝐴 ≼ 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ ≼ ) | |
| 4 | df-br | ⊢ ( 𝐴 ≺ 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ ≺ ) | |
| 5 | df-br | ⊢ ( 𝐴 ≈ 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ ≈ ) | |
| 6 | 4 5 | orbi12i | ⊢ ( ( 𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵 ) ↔ ( 〈 𝐴 , 𝐵 〉 ∈ ≺ ∨ 〈 𝐴 , 𝐵 〉 ∈ ≈ ) ) |
| 7 | elun | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ( ≺ ∪ ≈ ) ↔ ( 〈 𝐴 , 𝐵 〉 ∈ ≺ ∨ 〈 𝐴 , 𝐵 〉 ∈ ≈ ) ) | |
| 8 | 6 7 | bitr4i | ⊢ ( ( 𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵 ) ↔ 〈 𝐴 , 𝐵 〉 ∈ ( ≺ ∪ ≈ ) ) |
| 9 | 2 3 8 | 3bitr4i | ⊢ ( 𝐴 ≼ 𝐵 ↔ ( 𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵 ) ) |