Step |
Hyp |
Ref |
Expression |
1 |
|
brdom7disj.1 |
⊢ 𝐴 ∈ V |
2 |
|
brdom7disj.2 |
⊢ 𝐵 ∈ V |
3 |
|
brdom7disj.3 |
⊢ ( 𝐴 ∩ 𝐵 ) = ∅ |
4 |
2
|
brdom5 |
⊢ ( 𝐴 ≼ 𝐵 ↔ ∃ 𝑔 ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 𝑥 𝑔 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑦 𝑔 𝑥 ) ) |
5 |
|
zfpair2 |
⊢ { 𝑥 , 𝑦 } ∈ V |
6 |
|
eqeq1 |
⊢ ( 𝑣 = { 𝑥 , 𝑦 } → ( 𝑣 = { 𝑧 , 𝑤 } ↔ { 𝑥 , 𝑦 } = { 𝑧 , 𝑤 } ) ) |
7 |
6
|
anbi1d |
⊢ ( 𝑣 = { 𝑥 , 𝑦 } → ( ( 𝑣 = { 𝑧 , 𝑤 } ∧ 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ) ↔ ( { 𝑥 , 𝑦 } = { 𝑧 , 𝑤 } ∧ 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ) ) ) |
8 |
|
df-br |
⊢ ( 𝑧 𝑔 𝑤 ↔ 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ) |
9 |
8
|
anbi2i |
⊢ ( ( { 𝑥 , 𝑦 } = { 𝑧 , 𝑤 } ∧ 𝑧 𝑔 𝑤 ) ↔ ( { 𝑥 , 𝑦 } = { 𝑧 , 𝑤 } ∧ 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ) ) |
10 |
7 9
|
bitr4di |
⊢ ( 𝑣 = { 𝑥 , 𝑦 } → ( ( 𝑣 = { 𝑧 , 𝑤 } ∧ 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ) ↔ ( { 𝑥 , 𝑦 } = { 𝑧 , 𝑤 } ∧ 𝑧 𝑔 𝑤 ) ) ) |
11 |
10
|
2rexbidv |
⊢ ( 𝑣 = { 𝑥 , 𝑦 } → ( ∃ 𝑤 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 ( 𝑣 = { 𝑧 , 𝑤 } ∧ 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ) ↔ ∃ 𝑤 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 ( { 𝑥 , 𝑦 } = { 𝑧 , 𝑤 } ∧ 𝑧 𝑔 𝑤 ) ) ) |
12 |
5 11
|
elab |
⊢ ( { 𝑥 , 𝑦 } ∈ { 𝑣 ∣ ∃ 𝑤 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 ( 𝑣 = { 𝑧 , 𝑤 } ∧ 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ) } ↔ ∃ 𝑤 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 ( { 𝑥 , 𝑦 } = { 𝑧 , 𝑤 } ∧ 𝑧 𝑔 𝑤 ) ) |
13 |
|
incom |
⊢ ( 𝐵 ∩ 𝐴 ) = ( 𝐴 ∩ 𝐵 ) |
14 |
13 3
|
eqtri |
⊢ ( 𝐵 ∩ 𝐴 ) = ∅ |
15 |
|
disjne |
⊢ ( ( ( 𝐵 ∩ 𝐴 ) = ∅ ∧ 𝑥 ∈ 𝐵 ∧ 𝑤 ∈ 𝐴 ) → 𝑥 ≠ 𝑤 ) |
16 |
14 15
|
mp3an1 |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑤 ∈ 𝐴 ) → 𝑥 ≠ 𝑤 ) |
17 |
|
vex |
⊢ 𝑥 ∈ V |
18 |
|
vex |
⊢ 𝑦 ∈ V |
19 |
|
vex |
⊢ 𝑧 ∈ V |
20 |
|
vex |
⊢ 𝑤 ∈ V |
21 |
17 18 19 20
|
opthpr |
⊢ ( 𝑥 ≠ 𝑤 → ( { 𝑥 , 𝑦 } = { 𝑧 , 𝑤 } ↔ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
22 |
16 21
|
syl |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑤 ∈ 𝐴 ) → ( { 𝑥 , 𝑦 } = { 𝑧 , 𝑤 } ↔ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
23 |
|
breq12 |
⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( 𝑥 𝑔 𝑦 ↔ 𝑧 𝑔 𝑤 ) ) |
24 |
23
|
biimprd |
⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( 𝑧 𝑔 𝑤 → 𝑥 𝑔 𝑦 ) ) |
25 |
22 24
|
syl6bi |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑤 ∈ 𝐴 ) → ( { 𝑥 , 𝑦 } = { 𝑧 , 𝑤 } → ( 𝑧 𝑔 𝑤 → 𝑥 𝑔 𝑦 ) ) ) |
26 |
25
|
impd |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑤 ∈ 𝐴 ) → ( ( { 𝑥 , 𝑦 } = { 𝑧 , 𝑤 } ∧ 𝑧 𝑔 𝑤 ) → 𝑥 𝑔 𝑦 ) ) |
27 |
26
|
ex |
⊢ ( 𝑥 ∈ 𝐵 → ( 𝑤 ∈ 𝐴 → ( ( { 𝑥 , 𝑦 } = { 𝑧 , 𝑤 } ∧ 𝑧 𝑔 𝑤 ) → 𝑥 𝑔 𝑦 ) ) ) |
28 |
27
|
adantrd |
⊢ ( 𝑥 ∈ 𝐵 → ( ( 𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) → ( ( { 𝑥 , 𝑦 } = { 𝑧 , 𝑤 } ∧ 𝑧 𝑔 𝑤 ) → 𝑥 𝑔 𝑦 ) ) ) |
29 |
28
|
rexlimdvv |
⊢ ( 𝑥 ∈ 𝐵 → ( ∃ 𝑤 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 ( { 𝑥 , 𝑦 } = { 𝑧 , 𝑤 } ∧ 𝑧 𝑔 𝑤 ) → 𝑥 𝑔 𝑦 ) ) |
30 |
12 29
|
syl5bi |
⊢ ( 𝑥 ∈ 𝐵 → ( { 𝑥 , 𝑦 } ∈ { 𝑣 ∣ ∃ 𝑤 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 ( 𝑣 = { 𝑧 , 𝑤 } ∧ 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ) } → 𝑥 𝑔 𝑦 ) ) |
31 |
30
|
moimdv |
⊢ ( 𝑥 ∈ 𝐵 → ( ∃* 𝑦 𝑥 𝑔 𝑦 → ∃* 𝑦 { 𝑥 , 𝑦 } ∈ { 𝑣 ∣ ∃ 𝑤 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 ( 𝑣 = { 𝑧 , 𝑤 } ∧ 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ) } ) ) |
32 |
31
|
ralimia |
⊢ ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 𝑥 𝑔 𝑦 → ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 { 𝑥 , 𝑦 } ∈ { 𝑣 ∣ ∃ 𝑤 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 ( 𝑣 = { 𝑧 , 𝑤 } ∧ 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ) } ) |
33 |
|
zfpair2 |
⊢ { 𝑦 , 𝑥 } ∈ V |
34 |
|
eqeq1 |
⊢ ( 𝑣 = { 𝑦 , 𝑥 } → ( 𝑣 = { 𝑧 , 𝑤 } ↔ { 𝑦 , 𝑥 } = { 𝑧 , 𝑤 } ) ) |
35 |
34
|
anbi1d |
⊢ ( 𝑣 = { 𝑦 , 𝑥 } → ( ( 𝑣 = { 𝑧 , 𝑤 } ∧ 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ) ↔ ( { 𝑦 , 𝑥 } = { 𝑧 , 𝑤 } ∧ 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ) ) ) |
36 |
35
|
2rexbidv |
⊢ ( 𝑣 = { 𝑦 , 𝑥 } → ( ∃ 𝑤 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 ( 𝑣 = { 𝑧 , 𝑤 } ∧ 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ) ↔ ∃ 𝑤 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 ( { 𝑦 , 𝑥 } = { 𝑧 , 𝑤 } ∧ 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ) ) ) |
37 |
33 36
|
elab |
⊢ ( { 𝑦 , 𝑥 } ∈ { 𝑣 ∣ ∃ 𝑤 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 ( 𝑣 = { 𝑧 , 𝑤 } ∧ 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ) } ↔ ∃ 𝑤 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 ( { 𝑦 , 𝑥 } = { 𝑧 , 𝑤 } ∧ 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ) ) |
38 |
|
disjne |
⊢ ( ( ( 𝐵 ∩ 𝐴 ) = ∅ ∧ 𝑧 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝑧 ≠ 𝑥 ) |
39 |
14 38
|
mp3an1 |
⊢ ( ( 𝑧 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝑧 ≠ 𝑥 ) |
40 |
39
|
ancoms |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ≠ 𝑥 ) |
41 |
19 20 18 17
|
opthpr |
⊢ ( 𝑧 ≠ 𝑥 → ( { 𝑧 , 𝑤 } = { 𝑦 , 𝑥 } ↔ ( 𝑧 = 𝑦 ∧ 𝑤 = 𝑥 ) ) ) |
42 |
40 41
|
syl |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) → ( { 𝑧 , 𝑤 } = { 𝑦 , 𝑥 } ↔ ( 𝑧 = 𝑦 ∧ 𝑤 = 𝑥 ) ) ) |
43 |
|
eqcom |
⊢ ( { 𝑦 , 𝑥 } = { 𝑧 , 𝑤 } ↔ { 𝑧 , 𝑤 } = { 𝑦 , 𝑥 } ) |
44 |
|
ancom |
⊢ ( ( 𝑤 = 𝑥 ∧ 𝑧 = 𝑦 ) ↔ ( 𝑧 = 𝑦 ∧ 𝑤 = 𝑥 ) ) |
45 |
42 43 44
|
3bitr4g |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) → ( { 𝑦 , 𝑥 } = { 𝑧 , 𝑤 } ↔ ( 𝑤 = 𝑥 ∧ 𝑧 = 𝑦 ) ) ) |
46 |
8
|
bicomi |
⊢ ( 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ↔ 𝑧 𝑔 𝑤 ) |
47 |
46
|
a1i |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) → ( 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ↔ 𝑧 𝑔 𝑤 ) ) |
48 |
45 47
|
anbi12d |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) → ( ( { 𝑦 , 𝑥 } = { 𝑧 , 𝑤 } ∧ 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ) ↔ ( ( 𝑤 = 𝑥 ∧ 𝑧 = 𝑦 ) ∧ 𝑧 𝑔 𝑤 ) ) ) |
49 |
48
|
rexbidva |
⊢ ( 𝑥 ∈ 𝐴 → ( ∃ 𝑧 ∈ 𝐵 ( { 𝑦 , 𝑥 } = { 𝑧 , 𝑤 } ∧ 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ) ↔ ∃ 𝑧 ∈ 𝐵 ( ( 𝑤 = 𝑥 ∧ 𝑧 = 𝑦 ) ∧ 𝑧 𝑔 𝑤 ) ) ) |
50 |
49
|
rexbidv |
⊢ ( 𝑥 ∈ 𝐴 → ( ∃ 𝑤 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 ( { 𝑦 , 𝑥 } = { 𝑧 , 𝑤 } ∧ 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ) ↔ ∃ 𝑤 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 ( ( 𝑤 = 𝑥 ∧ 𝑧 = 𝑦 ) ∧ 𝑧 𝑔 𝑤 ) ) ) |
51 |
37 50
|
syl5bb |
⊢ ( 𝑥 ∈ 𝐴 → ( { 𝑦 , 𝑥 } ∈ { 𝑣 ∣ ∃ 𝑤 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 ( 𝑣 = { 𝑧 , 𝑤 } ∧ 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ) } ↔ ∃ 𝑤 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 ( ( 𝑤 = 𝑥 ∧ 𝑧 = 𝑦 ) ∧ 𝑧 𝑔 𝑤 ) ) ) |
52 |
51
|
adantr |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( { 𝑦 , 𝑥 } ∈ { 𝑣 ∣ ∃ 𝑤 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 ( 𝑣 = { 𝑧 , 𝑤 } ∧ 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ) } ↔ ∃ 𝑤 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 ( ( 𝑤 = 𝑥 ∧ 𝑧 = 𝑦 ) ∧ 𝑧 𝑔 𝑤 ) ) ) |
53 |
|
breq2 |
⊢ ( 𝑤 = 𝑥 → ( 𝑧 𝑔 𝑤 ↔ 𝑧 𝑔 𝑥 ) ) |
54 |
|
breq1 |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 𝑔 𝑥 ↔ 𝑦 𝑔 𝑥 ) ) |
55 |
53 54
|
ceqsrex2v |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( ∃ 𝑤 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 ( ( 𝑤 = 𝑥 ∧ 𝑧 = 𝑦 ) ∧ 𝑧 𝑔 𝑤 ) ↔ 𝑦 𝑔 𝑥 ) ) |
56 |
52 55
|
bitrd |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( { 𝑦 , 𝑥 } ∈ { 𝑣 ∣ ∃ 𝑤 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 ( 𝑣 = { 𝑧 , 𝑤 } ∧ 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ) } ↔ 𝑦 𝑔 𝑥 ) ) |
57 |
56
|
rexbidva |
⊢ ( 𝑥 ∈ 𝐴 → ( ∃ 𝑦 ∈ 𝐵 { 𝑦 , 𝑥 } ∈ { 𝑣 ∣ ∃ 𝑤 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 ( 𝑣 = { 𝑧 , 𝑤 } ∧ 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ) } ↔ ∃ 𝑦 ∈ 𝐵 𝑦 𝑔 𝑥 ) ) |
58 |
57
|
ralbiia |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 { 𝑦 , 𝑥 } ∈ { 𝑣 ∣ ∃ 𝑤 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 ( 𝑣 = { 𝑧 , 𝑤 } ∧ 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ) } ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑦 𝑔 𝑥 ) |
59 |
58
|
biimpri |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑦 𝑔 𝑥 → ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 { 𝑦 , 𝑥 } ∈ { 𝑣 ∣ ∃ 𝑤 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 ( 𝑣 = { 𝑧 , 𝑤 } ∧ 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ) } ) |
60 |
|
snex |
⊢ { { 𝑧 , 𝑤 } } ∈ V |
61 |
|
simpl |
⊢ ( ( 𝑣 = { 𝑧 , 𝑤 } ∧ 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ) → 𝑣 = { 𝑧 , 𝑤 } ) |
62 |
61
|
ss2abi |
⊢ { 𝑣 ∣ ( 𝑣 = { 𝑧 , 𝑤 } ∧ 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ) } ⊆ { 𝑣 ∣ 𝑣 = { 𝑧 , 𝑤 } } |
63 |
|
df-sn |
⊢ { { 𝑧 , 𝑤 } } = { 𝑣 ∣ 𝑣 = { 𝑧 , 𝑤 } } |
64 |
62 63
|
sseqtrri |
⊢ { 𝑣 ∣ ( 𝑣 = { 𝑧 , 𝑤 } ∧ 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ) } ⊆ { { 𝑧 , 𝑤 } } |
65 |
60 64
|
ssexi |
⊢ { 𝑣 ∣ ( 𝑣 = { 𝑧 , 𝑤 } ∧ 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ) } ∈ V |
66 |
1 2 65
|
ab2rexex2 |
⊢ { 𝑣 ∣ ∃ 𝑤 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 ( 𝑣 = { 𝑧 , 𝑤 } ∧ 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ) } ∈ V |
67 |
|
eleq2 |
⊢ ( 𝑓 = { 𝑣 ∣ ∃ 𝑤 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 ( 𝑣 = { 𝑧 , 𝑤 } ∧ 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ) } → ( { 𝑥 , 𝑦 } ∈ 𝑓 ↔ { 𝑥 , 𝑦 } ∈ { 𝑣 ∣ ∃ 𝑤 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 ( 𝑣 = { 𝑧 , 𝑤 } ∧ 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ) } ) ) |
68 |
67
|
mobidv |
⊢ ( 𝑓 = { 𝑣 ∣ ∃ 𝑤 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 ( 𝑣 = { 𝑧 , 𝑤 } ∧ 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ) } → ( ∃* 𝑦 { 𝑥 , 𝑦 } ∈ 𝑓 ↔ ∃* 𝑦 { 𝑥 , 𝑦 } ∈ { 𝑣 ∣ ∃ 𝑤 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 ( 𝑣 = { 𝑧 , 𝑤 } ∧ 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ) } ) ) |
69 |
68
|
ralbidv |
⊢ ( 𝑓 = { 𝑣 ∣ ∃ 𝑤 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 ( 𝑣 = { 𝑧 , 𝑤 } ∧ 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ) } → ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 { 𝑥 , 𝑦 } ∈ 𝑓 ↔ ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 { 𝑥 , 𝑦 } ∈ { 𝑣 ∣ ∃ 𝑤 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 ( 𝑣 = { 𝑧 , 𝑤 } ∧ 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ) } ) ) |
70 |
|
eleq2 |
⊢ ( 𝑓 = { 𝑣 ∣ ∃ 𝑤 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 ( 𝑣 = { 𝑧 , 𝑤 } ∧ 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ) } → ( { 𝑦 , 𝑥 } ∈ 𝑓 ↔ { 𝑦 , 𝑥 } ∈ { 𝑣 ∣ ∃ 𝑤 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 ( 𝑣 = { 𝑧 , 𝑤 } ∧ 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ) } ) ) |
71 |
70
|
rexbidv |
⊢ ( 𝑓 = { 𝑣 ∣ ∃ 𝑤 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 ( 𝑣 = { 𝑧 , 𝑤 } ∧ 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ) } → ( ∃ 𝑦 ∈ 𝐵 { 𝑦 , 𝑥 } ∈ 𝑓 ↔ ∃ 𝑦 ∈ 𝐵 { 𝑦 , 𝑥 } ∈ { 𝑣 ∣ ∃ 𝑤 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 ( 𝑣 = { 𝑧 , 𝑤 } ∧ 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ) } ) ) |
72 |
71
|
ralbidv |
⊢ ( 𝑓 = { 𝑣 ∣ ∃ 𝑤 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 ( 𝑣 = { 𝑧 , 𝑤 } ∧ 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ) } → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 { 𝑦 , 𝑥 } ∈ 𝑓 ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 { 𝑦 , 𝑥 } ∈ { 𝑣 ∣ ∃ 𝑤 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 ( 𝑣 = { 𝑧 , 𝑤 } ∧ 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ) } ) ) |
73 |
69 72
|
anbi12d |
⊢ ( 𝑓 = { 𝑣 ∣ ∃ 𝑤 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 ( 𝑣 = { 𝑧 , 𝑤 } ∧ 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ) } → ( ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 { 𝑥 , 𝑦 } ∈ 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 { 𝑦 , 𝑥 } ∈ 𝑓 ) ↔ ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 { 𝑥 , 𝑦 } ∈ { 𝑣 ∣ ∃ 𝑤 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 ( 𝑣 = { 𝑧 , 𝑤 } ∧ 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ) } ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 { 𝑦 , 𝑥 } ∈ { 𝑣 ∣ ∃ 𝑤 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 ( 𝑣 = { 𝑧 , 𝑤 } ∧ 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ) } ) ) ) |
74 |
66 73
|
spcev |
⊢ ( ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 { 𝑥 , 𝑦 } ∈ { 𝑣 ∣ ∃ 𝑤 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 ( 𝑣 = { 𝑧 , 𝑤 } ∧ 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ) } ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 { 𝑦 , 𝑥 } ∈ { 𝑣 ∣ ∃ 𝑤 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 ( 𝑣 = { 𝑧 , 𝑤 } ∧ 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ) } ) → ∃ 𝑓 ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 { 𝑥 , 𝑦 } ∈ 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 { 𝑦 , 𝑥 } ∈ 𝑓 ) ) |
75 |
32 59 74
|
syl2an |
⊢ ( ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 𝑥 𝑔 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑦 𝑔 𝑥 ) → ∃ 𝑓 ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 { 𝑥 , 𝑦 } ∈ 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 { 𝑦 , 𝑥 } ∈ 𝑓 ) ) |
76 |
75
|
exlimiv |
⊢ ( ∃ 𝑔 ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 𝑥 𝑔 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑦 𝑔 𝑥 ) → ∃ 𝑓 ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 { 𝑥 , 𝑦 } ∈ 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 { 𝑦 , 𝑥 } ∈ 𝑓 ) ) |
77 |
|
preq1 |
⊢ ( 𝑤 = 𝑥 → { 𝑤 , 𝑧 } = { 𝑥 , 𝑧 } ) |
78 |
77
|
eleq1d |
⊢ ( 𝑤 = 𝑥 → ( { 𝑤 , 𝑧 } ∈ 𝑓 ↔ { 𝑥 , 𝑧 } ∈ 𝑓 ) ) |
79 |
|
preq2 |
⊢ ( 𝑧 = 𝑦 → { 𝑥 , 𝑧 } = { 𝑥 , 𝑦 } ) |
80 |
79
|
eleq1d |
⊢ ( 𝑧 = 𝑦 → ( { 𝑥 , 𝑧 } ∈ 𝑓 ↔ { 𝑥 , 𝑦 } ∈ 𝑓 ) ) |
81 |
|
eqid |
⊢ { 〈 𝑤 , 𝑧 〉 ∣ { 𝑤 , 𝑧 } ∈ 𝑓 } = { 〈 𝑤 , 𝑧 〉 ∣ { 𝑤 , 𝑧 } ∈ 𝑓 } |
82 |
17 18 78 80 81
|
brab |
⊢ ( 𝑥 { 〈 𝑤 , 𝑧 〉 ∣ { 𝑤 , 𝑧 } ∈ 𝑓 } 𝑦 ↔ { 𝑥 , 𝑦 } ∈ 𝑓 ) |
83 |
82
|
mobii |
⊢ ( ∃* 𝑦 𝑥 { 〈 𝑤 , 𝑧 〉 ∣ { 𝑤 , 𝑧 } ∈ 𝑓 } 𝑦 ↔ ∃* 𝑦 { 𝑥 , 𝑦 } ∈ 𝑓 ) |
84 |
83
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 𝑥 { 〈 𝑤 , 𝑧 〉 ∣ { 𝑤 , 𝑧 } ∈ 𝑓 } 𝑦 ↔ ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 { 𝑥 , 𝑦 } ∈ 𝑓 ) |
85 |
|
preq1 |
⊢ ( 𝑤 = 𝑦 → { 𝑤 , 𝑧 } = { 𝑦 , 𝑧 } ) |
86 |
85
|
eleq1d |
⊢ ( 𝑤 = 𝑦 → ( { 𝑤 , 𝑧 } ∈ 𝑓 ↔ { 𝑦 , 𝑧 } ∈ 𝑓 ) ) |
87 |
|
preq2 |
⊢ ( 𝑧 = 𝑥 → { 𝑦 , 𝑧 } = { 𝑦 , 𝑥 } ) |
88 |
87
|
eleq1d |
⊢ ( 𝑧 = 𝑥 → ( { 𝑦 , 𝑧 } ∈ 𝑓 ↔ { 𝑦 , 𝑥 } ∈ 𝑓 ) ) |
89 |
18 17 86 88 81
|
brab |
⊢ ( 𝑦 { 〈 𝑤 , 𝑧 〉 ∣ { 𝑤 , 𝑧 } ∈ 𝑓 } 𝑥 ↔ { 𝑦 , 𝑥 } ∈ 𝑓 ) |
90 |
89
|
rexbii |
⊢ ( ∃ 𝑦 ∈ 𝐵 𝑦 { 〈 𝑤 , 𝑧 〉 ∣ { 𝑤 , 𝑧 } ∈ 𝑓 } 𝑥 ↔ ∃ 𝑦 ∈ 𝐵 { 𝑦 , 𝑥 } ∈ 𝑓 ) |
91 |
90
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑦 { 〈 𝑤 , 𝑧 〉 ∣ { 𝑤 , 𝑧 } ∈ 𝑓 } 𝑥 ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 { 𝑦 , 𝑥 } ∈ 𝑓 ) |
92 |
|
df-opab |
⊢ { 〈 𝑤 , 𝑧 〉 ∣ { 𝑤 , 𝑧 } ∈ 𝑓 } = { 𝑣 ∣ ∃ 𝑤 ∃ 𝑧 ( 𝑣 = 〈 𝑤 , 𝑧 〉 ∧ { 𝑤 , 𝑧 } ∈ 𝑓 ) } |
93 |
|
vuniex |
⊢ ∪ 𝑓 ∈ V |
94 |
20
|
prid1 |
⊢ 𝑤 ∈ { 𝑤 , 𝑧 } |
95 |
|
elunii |
⊢ ( ( 𝑤 ∈ { 𝑤 , 𝑧 } ∧ { 𝑤 , 𝑧 } ∈ 𝑓 ) → 𝑤 ∈ ∪ 𝑓 ) |
96 |
94 95
|
mpan |
⊢ ( { 𝑤 , 𝑧 } ∈ 𝑓 → 𝑤 ∈ ∪ 𝑓 ) |
97 |
96
|
adantl |
⊢ ( ( 𝑣 = 〈 𝑤 , 𝑧 〉 ∧ { 𝑤 , 𝑧 } ∈ 𝑓 ) → 𝑤 ∈ ∪ 𝑓 ) |
98 |
97
|
exlimiv |
⊢ ( ∃ 𝑧 ( 𝑣 = 〈 𝑤 , 𝑧 〉 ∧ { 𝑤 , 𝑧 } ∈ 𝑓 ) → 𝑤 ∈ ∪ 𝑓 ) |
99 |
19
|
prid2 |
⊢ 𝑧 ∈ { 𝑤 , 𝑧 } |
100 |
|
elunii |
⊢ ( ( 𝑧 ∈ { 𝑤 , 𝑧 } ∧ { 𝑤 , 𝑧 } ∈ 𝑓 ) → 𝑧 ∈ ∪ 𝑓 ) |
101 |
99 100
|
mpan |
⊢ ( { 𝑤 , 𝑧 } ∈ 𝑓 → 𝑧 ∈ ∪ 𝑓 ) |
102 |
101
|
adantl |
⊢ ( ( 𝑣 = 〈 𝑤 , 𝑧 〉 ∧ { 𝑤 , 𝑧 } ∈ 𝑓 ) → 𝑧 ∈ ∪ 𝑓 ) |
103 |
|
df-sn |
⊢ { 〈 𝑤 , 𝑧 〉 } = { 𝑣 ∣ 𝑣 = 〈 𝑤 , 𝑧 〉 } |
104 |
|
snex |
⊢ { 〈 𝑤 , 𝑧 〉 } ∈ V |
105 |
103 104
|
eqeltrri |
⊢ { 𝑣 ∣ 𝑣 = 〈 𝑤 , 𝑧 〉 } ∈ V |
106 |
|
simpl |
⊢ ( ( 𝑣 = 〈 𝑤 , 𝑧 〉 ∧ { 𝑤 , 𝑧 } ∈ 𝑓 ) → 𝑣 = 〈 𝑤 , 𝑧 〉 ) |
107 |
106
|
ss2abi |
⊢ { 𝑣 ∣ ( 𝑣 = 〈 𝑤 , 𝑧 〉 ∧ { 𝑤 , 𝑧 } ∈ 𝑓 ) } ⊆ { 𝑣 ∣ 𝑣 = 〈 𝑤 , 𝑧 〉 } |
108 |
105 107
|
ssexi |
⊢ { 𝑣 ∣ ( 𝑣 = 〈 𝑤 , 𝑧 〉 ∧ { 𝑤 , 𝑧 } ∈ 𝑓 ) } ∈ V |
109 |
93 102 108
|
abexex |
⊢ { 𝑣 ∣ ∃ 𝑧 ( 𝑣 = 〈 𝑤 , 𝑧 〉 ∧ { 𝑤 , 𝑧 } ∈ 𝑓 ) } ∈ V |
110 |
93 98 109
|
abexex |
⊢ { 𝑣 ∣ ∃ 𝑤 ∃ 𝑧 ( 𝑣 = 〈 𝑤 , 𝑧 〉 ∧ { 𝑤 , 𝑧 } ∈ 𝑓 ) } ∈ V |
111 |
92 110
|
eqeltri |
⊢ { 〈 𝑤 , 𝑧 〉 ∣ { 𝑤 , 𝑧 } ∈ 𝑓 } ∈ V |
112 |
|
breq |
⊢ ( 𝑔 = { 〈 𝑤 , 𝑧 〉 ∣ { 𝑤 , 𝑧 } ∈ 𝑓 } → ( 𝑥 𝑔 𝑦 ↔ 𝑥 { 〈 𝑤 , 𝑧 〉 ∣ { 𝑤 , 𝑧 } ∈ 𝑓 } 𝑦 ) ) |
113 |
112
|
mobidv |
⊢ ( 𝑔 = { 〈 𝑤 , 𝑧 〉 ∣ { 𝑤 , 𝑧 } ∈ 𝑓 } → ( ∃* 𝑦 𝑥 𝑔 𝑦 ↔ ∃* 𝑦 𝑥 { 〈 𝑤 , 𝑧 〉 ∣ { 𝑤 , 𝑧 } ∈ 𝑓 } 𝑦 ) ) |
114 |
113
|
ralbidv |
⊢ ( 𝑔 = { 〈 𝑤 , 𝑧 〉 ∣ { 𝑤 , 𝑧 } ∈ 𝑓 } → ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 𝑥 𝑔 𝑦 ↔ ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 𝑥 { 〈 𝑤 , 𝑧 〉 ∣ { 𝑤 , 𝑧 } ∈ 𝑓 } 𝑦 ) ) |
115 |
|
breq |
⊢ ( 𝑔 = { 〈 𝑤 , 𝑧 〉 ∣ { 𝑤 , 𝑧 } ∈ 𝑓 } → ( 𝑦 𝑔 𝑥 ↔ 𝑦 { 〈 𝑤 , 𝑧 〉 ∣ { 𝑤 , 𝑧 } ∈ 𝑓 } 𝑥 ) ) |
116 |
115
|
rexbidv |
⊢ ( 𝑔 = { 〈 𝑤 , 𝑧 〉 ∣ { 𝑤 , 𝑧 } ∈ 𝑓 } → ( ∃ 𝑦 ∈ 𝐵 𝑦 𝑔 𝑥 ↔ ∃ 𝑦 ∈ 𝐵 𝑦 { 〈 𝑤 , 𝑧 〉 ∣ { 𝑤 , 𝑧 } ∈ 𝑓 } 𝑥 ) ) |
117 |
116
|
ralbidv |
⊢ ( 𝑔 = { 〈 𝑤 , 𝑧 〉 ∣ { 𝑤 , 𝑧 } ∈ 𝑓 } → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑦 𝑔 𝑥 ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑦 { 〈 𝑤 , 𝑧 〉 ∣ { 𝑤 , 𝑧 } ∈ 𝑓 } 𝑥 ) ) |
118 |
114 117
|
anbi12d |
⊢ ( 𝑔 = { 〈 𝑤 , 𝑧 〉 ∣ { 𝑤 , 𝑧 } ∈ 𝑓 } → ( ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 𝑥 𝑔 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑦 𝑔 𝑥 ) ↔ ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 𝑥 { 〈 𝑤 , 𝑧 〉 ∣ { 𝑤 , 𝑧 } ∈ 𝑓 } 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑦 { 〈 𝑤 , 𝑧 〉 ∣ { 𝑤 , 𝑧 } ∈ 𝑓 } 𝑥 ) ) ) |
119 |
111 118
|
spcev |
⊢ ( ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 𝑥 { 〈 𝑤 , 𝑧 〉 ∣ { 𝑤 , 𝑧 } ∈ 𝑓 } 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑦 { 〈 𝑤 , 𝑧 〉 ∣ { 𝑤 , 𝑧 } ∈ 𝑓 } 𝑥 ) → ∃ 𝑔 ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 𝑥 𝑔 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑦 𝑔 𝑥 ) ) |
120 |
84 91 119
|
syl2anbr |
⊢ ( ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 { 𝑥 , 𝑦 } ∈ 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 { 𝑦 , 𝑥 } ∈ 𝑓 ) → ∃ 𝑔 ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 𝑥 𝑔 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑦 𝑔 𝑥 ) ) |
121 |
120
|
exlimiv |
⊢ ( ∃ 𝑓 ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 { 𝑥 , 𝑦 } ∈ 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 { 𝑦 , 𝑥 } ∈ 𝑓 ) → ∃ 𝑔 ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 𝑥 𝑔 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑦 𝑔 𝑥 ) ) |
122 |
76 121
|
impbii |
⊢ ( ∃ 𝑔 ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 𝑥 𝑔 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑦 𝑔 𝑥 ) ↔ ∃ 𝑓 ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 { 𝑥 , 𝑦 } ∈ 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 { 𝑦 , 𝑥 } ∈ 𝑓 ) ) |
123 |
4 122
|
bitri |
⊢ ( 𝐴 ≼ 𝐵 ↔ ∃ 𝑓 ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 { 𝑥 , 𝑦 } ∈ 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 { 𝑦 , 𝑥 } ∈ 𝑓 ) ) |