Metamath Proof Explorer


Theorem brdomi

Description: Dominance relation. (Contributed by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion brdomi ( 𝐴𝐵 → ∃ 𝑓 𝑓 : 𝐴1-1𝐵 )

Proof

Step Hyp Ref Expression
1 reldom Rel ≼
2 1 brrelex2i ( 𝐴𝐵𝐵 ∈ V )
3 brdomg ( 𝐵 ∈ V → ( 𝐴𝐵 ↔ ∃ 𝑓 𝑓 : 𝐴1-1𝐵 ) )
4 2 3 syl ( 𝐴𝐵 → ( 𝐴𝐵 ↔ ∃ 𝑓 𝑓 : 𝐴1-1𝐵 ) )
5 4 ibi ( 𝐴𝐵 → ∃ 𝑓 𝑓 : 𝐴1-1𝐵 )