Metamath Proof Explorer


Theorem brecop

Description: Binary relation on a quotient set. Lemma for real number construction. (Contributed by NM, 29-Jan-1996)

Ref Expression
Hypotheses brecop.1 ∈ V
brecop.2 Er ( 𝐺 × 𝐺 )
brecop.4 𝐻 = ( ( 𝐺 × 𝐺 ) / )
brecop.5 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐻𝑦𝐻 ) ∧ ∃ 𝑧𝑤𝑣𝑢 ( ( 𝑥 = [ ⟨ 𝑧 , 𝑤 ⟩ ] 𝑦 = [ ⟨ 𝑣 , 𝑢 ⟩ ] ) ∧ 𝜑 ) ) }
brecop.6 ( ( ( ( 𝑧𝐺𝑤𝐺 ) ∧ ( 𝐴𝐺𝐵𝐺 ) ) ∧ ( ( 𝑣𝐺𝑢𝐺 ) ∧ ( 𝐶𝐺𝐷𝐺 ) ) ) → ( ( [ ⟨ 𝑧 , 𝑤 ⟩ ] = [ ⟨ 𝐴 , 𝐵 ⟩ ] ∧ [ ⟨ 𝑣 , 𝑢 ⟩ ] = [ ⟨ 𝐶 , 𝐷 ⟩ ] ) → ( 𝜑𝜓 ) ) )
Assertion brecop ( ( ( 𝐴𝐺𝐵𝐺 ) ∧ ( 𝐶𝐺𝐷𝐺 ) ) → ( [ ⟨ 𝐴 , 𝐵 ⟩ ] [ ⟨ 𝐶 , 𝐷 ⟩ ] 𝜓 ) )

Proof

Step Hyp Ref Expression
1 brecop.1 ∈ V
2 brecop.2 Er ( 𝐺 × 𝐺 )
3 brecop.4 𝐻 = ( ( 𝐺 × 𝐺 ) / )
4 brecop.5 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐻𝑦𝐻 ) ∧ ∃ 𝑧𝑤𝑣𝑢 ( ( 𝑥 = [ ⟨ 𝑧 , 𝑤 ⟩ ] 𝑦 = [ ⟨ 𝑣 , 𝑢 ⟩ ] ) ∧ 𝜑 ) ) }
5 brecop.6 ( ( ( ( 𝑧𝐺𝑤𝐺 ) ∧ ( 𝐴𝐺𝐵𝐺 ) ) ∧ ( ( 𝑣𝐺𝑢𝐺 ) ∧ ( 𝐶𝐺𝐷𝐺 ) ) ) → ( ( [ ⟨ 𝑧 , 𝑤 ⟩ ] = [ ⟨ 𝐴 , 𝐵 ⟩ ] ∧ [ ⟨ 𝑣 , 𝑢 ⟩ ] = [ ⟨ 𝐶 , 𝐷 ⟩ ] ) → ( 𝜑𝜓 ) ) )
6 1 3 ecopqsi ( ( 𝐴𝐺𝐵𝐺 ) → [ ⟨ 𝐴 , 𝐵 ⟩ ] 𝐻 )
7 1 3 ecopqsi ( ( 𝐶𝐺𝐷𝐺 ) → [ ⟨ 𝐶 , 𝐷 ⟩ ] 𝐻 )
8 df-br ( [ ⟨ 𝐴 , 𝐵 ⟩ ] [ ⟨ 𝐶 , 𝐷 ⟩ ] ↔ ⟨ [ ⟨ 𝐴 , 𝐵 ⟩ ] , [ ⟨ 𝐶 , 𝐷 ⟩ ] ⟩ ∈ )
9 4 eleq2i ( ⟨ [ ⟨ 𝐴 , 𝐵 ⟩ ] , [ ⟨ 𝐶 , 𝐷 ⟩ ] ⟩ ∈ ↔ ⟨ [ ⟨ 𝐴 , 𝐵 ⟩ ] , [ ⟨ 𝐶 , 𝐷 ⟩ ] ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐻𝑦𝐻 ) ∧ ∃ 𝑧𝑤𝑣𝑢 ( ( 𝑥 = [ ⟨ 𝑧 , 𝑤 ⟩ ] 𝑦 = [ ⟨ 𝑣 , 𝑢 ⟩ ] ) ∧ 𝜑 ) ) } )
10 8 9 bitri ( [ ⟨ 𝐴 , 𝐵 ⟩ ] [ ⟨ 𝐶 , 𝐷 ⟩ ] ↔ ⟨ [ ⟨ 𝐴 , 𝐵 ⟩ ] , [ ⟨ 𝐶 , 𝐷 ⟩ ] ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐻𝑦𝐻 ) ∧ ∃ 𝑧𝑤𝑣𝑢 ( ( 𝑥 = [ ⟨ 𝑧 , 𝑤 ⟩ ] 𝑦 = [ ⟨ 𝑣 , 𝑢 ⟩ ] ) ∧ 𝜑 ) ) } )
11 eqeq1 ( 𝑥 = [ ⟨ 𝐴 , 𝐵 ⟩ ] → ( 𝑥 = [ ⟨ 𝑧 , 𝑤 ⟩ ] ↔ [ ⟨ 𝐴 , 𝐵 ⟩ ] = [ ⟨ 𝑧 , 𝑤 ⟩ ] ) )
12 11 anbi1d ( 𝑥 = [ ⟨ 𝐴 , 𝐵 ⟩ ] → ( ( 𝑥 = [ ⟨ 𝑧 , 𝑤 ⟩ ] 𝑦 = [ ⟨ 𝑣 , 𝑢 ⟩ ] ) ↔ ( [ ⟨ 𝐴 , 𝐵 ⟩ ] = [ ⟨ 𝑧 , 𝑤 ⟩ ] 𝑦 = [ ⟨ 𝑣 , 𝑢 ⟩ ] ) ) )
13 12 anbi1d ( 𝑥 = [ ⟨ 𝐴 , 𝐵 ⟩ ] → ( ( ( 𝑥 = [ ⟨ 𝑧 , 𝑤 ⟩ ] 𝑦 = [ ⟨ 𝑣 , 𝑢 ⟩ ] ) ∧ 𝜑 ) ↔ ( ( [ ⟨ 𝐴 , 𝐵 ⟩ ] = [ ⟨ 𝑧 , 𝑤 ⟩ ] 𝑦 = [ ⟨ 𝑣 , 𝑢 ⟩ ] ) ∧ 𝜑 ) ) )
14 13 4exbidv ( 𝑥 = [ ⟨ 𝐴 , 𝐵 ⟩ ] → ( ∃ 𝑧𝑤𝑣𝑢 ( ( 𝑥 = [ ⟨ 𝑧 , 𝑤 ⟩ ] 𝑦 = [ ⟨ 𝑣 , 𝑢 ⟩ ] ) ∧ 𝜑 ) ↔ ∃ 𝑧𝑤𝑣𝑢 ( ( [ ⟨ 𝐴 , 𝐵 ⟩ ] = [ ⟨ 𝑧 , 𝑤 ⟩ ] 𝑦 = [ ⟨ 𝑣 , 𝑢 ⟩ ] ) ∧ 𝜑 ) ) )
15 eqeq1 ( 𝑦 = [ ⟨ 𝐶 , 𝐷 ⟩ ] → ( 𝑦 = [ ⟨ 𝑣 , 𝑢 ⟩ ] ↔ [ ⟨ 𝐶 , 𝐷 ⟩ ] = [ ⟨ 𝑣 , 𝑢 ⟩ ] ) )
16 15 anbi2d ( 𝑦 = [ ⟨ 𝐶 , 𝐷 ⟩ ] → ( ( [ ⟨ 𝐴 , 𝐵 ⟩ ] = [ ⟨ 𝑧 , 𝑤 ⟩ ] 𝑦 = [ ⟨ 𝑣 , 𝑢 ⟩ ] ) ↔ ( [ ⟨ 𝐴 , 𝐵 ⟩ ] = [ ⟨ 𝑧 , 𝑤 ⟩ ] ∧ [ ⟨ 𝐶 , 𝐷 ⟩ ] = [ ⟨ 𝑣 , 𝑢 ⟩ ] ) ) )
17 16 anbi1d ( 𝑦 = [ ⟨ 𝐶 , 𝐷 ⟩ ] → ( ( ( [ ⟨ 𝐴 , 𝐵 ⟩ ] = [ ⟨ 𝑧 , 𝑤 ⟩ ] 𝑦 = [ ⟨ 𝑣 , 𝑢 ⟩ ] ) ∧ 𝜑 ) ↔ ( ( [ ⟨ 𝐴 , 𝐵 ⟩ ] = [ ⟨ 𝑧 , 𝑤 ⟩ ] ∧ [ ⟨ 𝐶 , 𝐷 ⟩ ] = [ ⟨ 𝑣 , 𝑢 ⟩ ] ) ∧ 𝜑 ) ) )
18 17 4exbidv ( 𝑦 = [ ⟨ 𝐶 , 𝐷 ⟩ ] → ( ∃ 𝑧𝑤𝑣𝑢 ( ( [ ⟨ 𝐴 , 𝐵 ⟩ ] = [ ⟨ 𝑧 , 𝑤 ⟩ ] 𝑦 = [ ⟨ 𝑣 , 𝑢 ⟩ ] ) ∧ 𝜑 ) ↔ ∃ 𝑧𝑤𝑣𝑢 ( ( [ ⟨ 𝐴 , 𝐵 ⟩ ] = [ ⟨ 𝑧 , 𝑤 ⟩ ] ∧ [ ⟨ 𝐶 , 𝐷 ⟩ ] = [ ⟨ 𝑣 , 𝑢 ⟩ ] ) ∧ 𝜑 ) ) )
19 14 18 opelopab2 ( ( [ ⟨ 𝐴 , 𝐵 ⟩ ] 𝐻 ∧ [ ⟨ 𝐶 , 𝐷 ⟩ ] 𝐻 ) → ( ⟨ [ ⟨ 𝐴 , 𝐵 ⟩ ] , [ ⟨ 𝐶 , 𝐷 ⟩ ] ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐻𝑦𝐻 ) ∧ ∃ 𝑧𝑤𝑣𝑢 ( ( 𝑥 = [ ⟨ 𝑧 , 𝑤 ⟩ ] 𝑦 = [ ⟨ 𝑣 , 𝑢 ⟩ ] ) ∧ 𝜑 ) ) } ↔ ∃ 𝑧𝑤𝑣𝑢 ( ( [ ⟨ 𝐴 , 𝐵 ⟩ ] = [ ⟨ 𝑧 , 𝑤 ⟩ ] ∧ [ ⟨ 𝐶 , 𝐷 ⟩ ] = [ ⟨ 𝑣 , 𝑢 ⟩ ] ) ∧ 𝜑 ) ) )
20 10 19 syl5bb ( ( [ ⟨ 𝐴 , 𝐵 ⟩ ] 𝐻 ∧ [ ⟨ 𝐶 , 𝐷 ⟩ ] 𝐻 ) → ( [ ⟨ 𝐴 , 𝐵 ⟩ ] [ ⟨ 𝐶 , 𝐷 ⟩ ] ↔ ∃ 𝑧𝑤𝑣𝑢 ( ( [ ⟨ 𝐴 , 𝐵 ⟩ ] = [ ⟨ 𝑧 , 𝑤 ⟩ ] ∧ [ ⟨ 𝐶 , 𝐷 ⟩ ] = [ ⟨ 𝑣 , 𝑢 ⟩ ] ) ∧ 𝜑 ) ) )
21 6 7 20 syl2an ( ( ( 𝐴𝐺𝐵𝐺 ) ∧ ( 𝐶𝐺𝐷𝐺 ) ) → ( [ ⟨ 𝐴 , 𝐵 ⟩ ] [ ⟨ 𝐶 , 𝐷 ⟩ ] ↔ ∃ 𝑧𝑤𝑣𝑢 ( ( [ ⟨ 𝐴 , 𝐵 ⟩ ] = [ ⟨ 𝑧 , 𝑤 ⟩ ] ∧ [ ⟨ 𝐶 , 𝐷 ⟩ ] = [ ⟨ 𝑣 , 𝑢 ⟩ ] ) ∧ 𝜑 ) ) )
22 opeq12 ( ( 𝑧 = 𝐴𝑤 = 𝐵 ) → ⟨ 𝑧 , 𝑤 ⟩ = ⟨ 𝐴 , 𝐵 ⟩ )
23 22 eceq1d ( ( 𝑧 = 𝐴𝑤 = 𝐵 ) → [ ⟨ 𝑧 , 𝑤 ⟩ ] = [ ⟨ 𝐴 , 𝐵 ⟩ ] )
24 opeq12 ( ( 𝑣 = 𝐶𝑢 = 𝐷 ) → ⟨ 𝑣 , 𝑢 ⟩ = ⟨ 𝐶 , 𝐷 ⟩ )
25 24 eceq1d ( ( 𝑣 = 𝐶𝑢 = 𝐷 ) → [ ⟨ 𝑣 , 𝑢 ⟩ ] = [ ⟨ 𝐶 , 𝐷 ⟩ ] )
26 23 25 anim12i ( ( ( 𝑧 = 𝐴𝑤 = 𝐵 ) ∧ ( 𝑣 = 𝐶𝑢 = 𝐷 ) ) → ( [ ⟨ 𝑧 , 𝑤 ⟩ ] = [ ⟨ 𝐴 , 𝐵 ⟩ ] ∧ [ ⟨ 𝑣 , 𝑢 ⟩ ] = [ ⟨ 𝐶 , 𝐷 ⟩ ] ) )
27 opelxpi ( ( 𝐴𝐺𝐵𝐺 ) → ⟨ 𝐴 , 𝐵 ⟩ ∈ ( 𝐺 × 𝐺 ) )
28 opelxp ( ⟨ 𝑧 , 𝑤 ⟩ ∈ ( 𝐺 × 𝐺 ) ↔ ( 𝑧𝐺𝑤𝐺 ) )
29 2 a1i ( [ ⟨ 𝑧 , 𝑤 ⟩ ] = [ ⟨ 𝐴 , 𝐵 ⟩ ] Er ( 𝐺 × 𝐺 ) )
30 id ( [ ⟨ 𝑧 , 𝑤 ⟩ ] = [ ⟨ 𝐴 , 𝐵 ⟩ ] → [ ⟨ 𝑧 , 𝑤 ⟩ ] = [ ⟨ 𝐴 , 𝐵 ⟩ ] )
31 29 30 ereldm ( [ ⟨ 𝑧 , 𝑤 ⟩ ] = [ ⟨ 𝐴 , 𝐵 ⟩ ] → ( ⟨ 𝑧 , 𝑤 ⟩ ∈ ( 𝐺 × 𝐺 ) ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ ( 𝐺 × 𝐺 ) ) )
32 28 31 bitr3id ( [ ⟨ 𝑧 , 𝑤 ⟩ ] = [ ⟨ 𝐴 , 𝐵 ⟩ ] → ( ( 𝑧𝐺𝑤𝐺 ) ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ ( 𝐺 × 𝐺 ) ) )
33 27 32 syl5ibr ( [ ⟨ 𝑧 , 𝑤 ⟩ ] = [ ⟨ 𝐴 , 𝐵 ⟩ ] → ( ( 𝐴𝐺𝐵𝐺 ) → ( 𝑧𝐺𝑤𝐺 ) ) )
34 opelxpi ( ( 𝐶𝐺𝐷𝐺 ) → ⟨ 𝐶 , 𝐷 ⟩ ∈ ( 𝐺 × 𝐺 ) )
35 opelxp ( ⟨ 𝑣 , 𝑢 ⟩ ∈ ( 𝐺 × 𝐺 ) ↔ ( 𝑣𝐺𝑢𝐺 ) )
36 2 a1i ( [ ⟨ 𝑣 , 𝑢 ⟩ ] = [ ⟨ 𝐶 , 𝐷 ⟩ ] Er ( 𝐺 × 𝐺 ) )
37 id ( [ ⟨ 𝑣 , 𝑢 ⟩ ] = [ ⟨ 𝐶 , 𝐷 ⟩ ] → [ ⟨ 𝑣 , 𝑢 ⟩ ] = [ ⟨ 𝐶 , 𝐷 ⟩ ] )
38 36 37 ereldm ( [ ⟨ 𝑣 , 𝑢 ⟩ ] = [ ⟨ 𝐶 , 𝐷 ⟩ ] → ( ⟨ 𝑣 , 𝑢 ⟩ ∈ ( 𝐺 × 𝐺 ) ↔ ⟨ 𝐶 , 𝐷 ⟩ ∈ ( 𝐺 × 𝐺 ) ) )
39 35 38 bitr3id ( [ ⟨ 𝑣 , 𝑢 ⟩ ] = [ ⟨ 𝐶 , 𝐷 ⟩ ] → ( ( 𝑣𝐺𝑢𝐺 ) ↔ ⟨ 𝐶 , 𝐷 ⟩ ∈ ( 𝐺 × 𝐺 ) ) )
40 34 39 syl5ibr ( [ ⟨ 𝑣 , 𝑢 ⟩ ] = [ ⟨ 𝐶 , 𝐷 ⟩ ] → ( ( 𝐶𝐺𝐷𝐺 ) → ( 𝑣𝐺𝑢𝐺 ) ) )
41 33 40 im2anan9 ( ( [ ⟨ 𝑧 , 𝑤 ⟩ ] = [ ⟨ 𝐴 , 𝐵 ⟩ ] ∧ [ ⟨ 𝑣 , 𝑢 ⟩ ] = [ ⟨ 𝐶 , 𝐷 ⟩ ] ) → ( ( ( 𝐴𝐺𝐵𝐺 ) ∧ ( 𝐶𝐺𝐷𝐺 ) ) → ( ( 𝑧𝐺𝑤𝐺 ) ∧ ( 𝑣𝐺𝑢𝐺 ) ) ) )
42 5 an4s ( ( ( ( 𝑧𝐺𝑤𝐺 ) ∧ ( 𝑣𝐺𝑢𝐺 ) ) ∧ ( ( 𝐴𝐺𝐵𝐺 ) ∧ ( 𝐶𝐺𝐷𝐺 ) ) ) → ( ( [ ⟨ 𝑧 , 𝑤 ⟩ ] = [ ⟨ 𝐴 , 𝐵 ⟩ ] ∧ [ ⟨ 𝑣 , 𝑢 ⟩ ] = [ ⟨ 𝐶 , 𝐷 ⟩ ] ) → ( 𝜑𝜓 ) ) )
43 42 ex ( ( ( 𝑧𝐺𝑤𝐺 ) ∧ ( 𝑣𝐺𝑢𝐺 ) ) → ( ( ( 𝐴𝐺𝐵𝐺 ) ∧ ( 𝐶𝐺𝐷𝐺 ) ) → ( ( [ ⟨ 𝑧 , 𝑤 ⟩ ] = [ ⟨ 𝐴 , 𝐵 ⟩ ] ∧ [ ⟨ 𝑣 , 𝑢 ⟩ ] = [ ⟨ 𝐶 , 𝐷 ⟩ ] ) → ( 𝜑𝜓 ) ) ) )
44 43 com13 ( ( [ ⟨ 𝑧 , 𝑤 ⟩ ] = [ ⟨ 𝐴 , 𝐵 ⟩ ] ∧ [ ⟨ 𝑣 , 𝑢 ⟩ ] = [ ⟨ 𝐶 , 𝐷 ⟩ ] ) → ( ( ( 𝐴𝐺𝐵𝐺 ) ∧ ( 𝐶𝐺𝐷𝐺 ) ) → ( ( ( 𝑧𝐺𝑤𝐺 ) ∧ ( 𝑣𝐺𝑢𝐺 ) ) → ( 𝜑𝜓 ) ) ) )
45 41 44 mpdd ( ( [ ⟨ 𝑧 , 𝑤 ⟩ ] = [ ⟨ 𝐴 , 𝐵 ⟩ ] ∧ [ ⟨ 𝑣 , 𝑢 ⟩ ] = [ ⟨ 𝐶 , 𝐷 ⟩ ] ) → ( ( ( 𝐴𝐺𝐵𝐺 ) ∧ ( 𝐶𝐺𝐷𝐺 ) ) → ( 𝜑𝜓 ) ) )
46 45 pm5.74d ( ( [ ⟨ 𝑧 , 𝑤 ⟩ ] = [ ⟨ 𝐴 , 𝐵 ⟩ ] ∧ [ ⟨ 𝑣 , 𝑢 ⟩ ] = [ ⟨ 𝐶 , 𝐷 ⟩ ] ) → ( ( ( ( 𝐴𝐺𝐵𝐺 ) ∧ ( 𝐶𝐺𝐷𝐺 ) ) → 𝜑 ) ↔ ( ( ( 𝐴𝐺𝐵𝐺 ) ∧ ( 𝐶𝐺𝐷𝐺 ) ) → 𝜓 ) ) )
47 26 46 cgsex4g ( ( ( 𝐴𝐺𝐵𝐺 ) ∧ ( 𝐶𝐺𝐷𝐺 ) ) → ( ∃ 𝑧𝑤𝑣𝑢 ( ( [ ⟨ 𝑧 , 𝑤 ⟩ ] = [ ⟨ 𝐴 , 𝐵 ⟩ ] ∧ [ ⟨ 𝑣 , 𝑢 ⟩ ] = [ ⟨ 𝐶 , 𝐷 ⟩ ] ) ∧ ( ( ( 𝐴𝐺𝐵𝐺 ) ∧ ( 𝐶𝐺𝐷𝐺 ) ) → 𝜑 ) ) ↔ ( ( ( 𝐴𝐺𝐵𝐺 ) ∧ ( 𝐶𝐺𝐷𝐺 ) ) → 𝜓 ) ) )
48 eqcom ( [ ⟨ 𝐴 , 𝐵 ⟩ ] = [ ⟨ 𝑧 , 𝑤 ⟩ ] ↔ [ ⟨ 𝑧 , 𝑤 ⟩ ] = [ ⟨ 𝐴 , 𝐵 ⟩ ] )
49 eqcom ( [ ⟨ 𝐶 , 𝐷 ⟩ ] = [ ⟨ 𝑣 , 𝑢 ⟩ ] ↔ [ ⟨ 𝑣 , 𝑢 ⟩ ] = [ ⟨ 𝐶 , 𝐷 ⟩ ] )
50 48 49 anbi12i ( ( [ ⟨ 𝐴 , 𝐵 ⟩ ] = [ ⟨ 𝑧 , 𝑤 ⟩ ] ∧ [ ⟨ 𝐶 , 𝐷 ⟩ ] = [ ⟨ 𝑣 , 𝑢 ⟩ ] ) ↔ ( [ ⟨ 𝑧 , 𝑤 ⟩ ] = [ ⟨ 𝐴 , 𝐵 ⟩ ] ∧ [ ⟨ 𝑣 , 𝑢 ⟩ ] = [ ⟨ 𝐶 , 𝐷 ⟩ ] ) )
51 50 a1i ( ( ( 𝐴𝐺𝐵𝐺 ) ∧ ( 𝐶𝐺𝐷𝐺 ) ) → ( ( [ ⟨ 𝐴 , 𝐵 ⟩ ] = [ ⟨ 𝑧 , 𝑤 ⟩ ] ∧ [ ⟨ 𝐶 , 𝐷 ⟩ ] = [ ⟨ 𝑣 , 𝑢 ⟩ ] ) ↔ ( [ ⟨ 𝑧 , 𝑤 ⟩ ] = [ ⟨ 𝐴 , 𝐵 ⟩ ] ∧ [ ⟨ 𝑣 , 𝑢 ⟩ ] = [ ⟨ 𝐶 , 𝐷 ⟩ ] ) ) )
52 biimt ( ( ( 𝐴𝐺𝐵𝐺 ) ∧ ( 𝐶𝐺𝐷𝐺 ) ) → ( 𝜑 ↔ ( ( ( 𝐴𝐺𝐵𝐺 ) ∧ ( 𝐶𝐺𝐷𝐺 ) ) → 𝜑 ) ) )
53 51 52 anbi12d ( ( ( 𝐴𝐺𝐵𝐺 ) ∧ ( 𝐶𝐺𝐷𝐺 ) ) → ( ( ( [ ⟨ 𝐴 , 𝐵 ⟩ ] = [ ⟨ 𝑧 , 𝑤 ⟩ ] ∧ [ ⟨ 𝐶 , 𝐷 ⟩ ] = [ ⟨ 𝑣 , 𝑢 ⟩ ] ) ∧ 𝜑 ) ↔ ( ( [ ⟨ 𝑧 , 𝑤 ⟩ ] = [ ⟨ 𝐴 , 𝐵 ⟩ ] ∧ [ ⟨ 𝑣 , 𝑢 ⟩ ] = [ ⟨ 𝐶 , 𝐷 ⟩ ] ) ∧ ( ( ( 𝐴𝐺𝐵𝐺 ) ∧ ( 𝐶𝐺𝐷𝐺 ) ) → 𝜑 ) ) ) )
54 53 4exbidv ( ( ( 𝐴𝐺𝐵𝐺 ) ∧ ( 𝐶𝐺𝐷𝐺 ) ) → ( ∃ 𝑧𝑤𝑣𝑢 ( ( [ ⟨ 𝐴 , 𝐵 ⟩ ] = [ ⟨ 𝑧 , 𝑤 ⟩ ] ∧ [ ⟨ 𝐶 , 𝐷 ⟩ ] = [ ⟨ 𝑣 , 𝑢 ⟩ ] ) ∧ 𝜑 ) ↔ ∃ 𝑧𝑤𝑣𝑢 ( ( [ ⟨ 𝑧 , 𝑤 ⟩ ] = [ ⟨ 𝐴 , 𝐵 ⟩ ] ∧ [ ⟨ 𝑣 , 𝑢 ⟩ ] = [ ⟨ 𝐶 , 𝐷 ⟩ ] ) ∧ ( ( ( 𝐴𝐺𝐵𝐺 ) ∧ ( 𝐶𝐺𝐷𝐺 ) ) → 𝜑 ) ) ) )
55 biimt ( ( ( 𝐴𝐺𝐵𝐺 ) ∧ ( 𝐶𝐺𝐷𝐺 ) ) → ( 𝜓 ↔ ( ( ( 𝐴𝐺𝐵𝐺 ) ∧ ( 𝐶𝐺𝐷𝐺 ) ) → 𝜓 ) ) )
56 47 54 55 3bitr4d ( ( ( 𝐴𝐺𝐵𝐺 ) ∧ ( 𝐶𝐺𝐷𝐺 ) ) → ( ∃ 𝑧𝑤𝑣𝑢 ( ( [ ⟨ 𝐴 , 𝐵 ⟩ ] = [ ⟨ 𝑧 , 𝑤 ⟩ ] ∧ [ ⟨ 𝐶 , 𝐷 ⟩ ] = [ ⟨ 𝑣 , 𝑢 ⟩ ] ) ∧ 𝜑 ) ↔ 𝜓 ) )
57 21 56 bitrd ( ( ( 𝐴𝐺𝐵𝐺 ) ∧ ( 𝐶𝐺𝐷𝐺 ) ) → ( [ ⟨ 𝐴 , 𝐵 ⟩ ] [ ⟨ 𝐶 , 𝐷 ⟩ ] 𝜓 ) )