Step |
Hyp |
Ref |
Expression |
1 |
|
brecop2.1 |
⊢ dom ∼ = ( 𝐺 × 𝐺 ) |
2 |
|
brecop2.2 |
⊢ 𝐻 = ( ( 𝐺 × 𝐺 ) / ∼ ) |
3 |
|
brecop2.3 |
⊢ 𝑅 ⊆ ( 𝐻 × 𝐻 ) |
4 |
|
brecop2.4 |
⊢ ≤ ⊆ ( 𝐺 × 𝐺 ) |
5 |
|
brecop2.5 |
⊢ ¬ ∅ ∈ 𝐺 |
6 |
|
brecop2.6 |
⊢ dom + = ( 𝐺 × 𝐺 ) |
7 |
|
brecop2.7 |
⊢ ( ( ( 𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐺 ) ∧ ( 𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺 ) ) → ( [ 〈 𝐴 , 𝐵 〉 ] ∼ 𝑅 [ 〈 𝐶 , 𝐷 〉 ] ∼ ↔ ( 𝐴 + 𝐷 ) ≤ ( 𝐵 + 𝐶 ) ) ) |
8 |
3
|
brel |
⊢ ( [ 〈 𝐴 , 𝐵 〉 ] ∼ 𝑅 [ 〈 𝐶 , 𝐷 〉 ] ∼ → ( [ 〈 𝐴 , 𝐵 〉 ] ∼ ∈ 𝐻 ∧ [ 〈 𝐶 , 𝐷 〉 ] ∼ ∈ 𝐻 ) ) |
9 |
|
ecelqsdm |
⊢ ( ( dom ∼ = ( 𝐺 × 𝐺 ) ∧ [ 〈 𝐴 , 𝐵 〉 ] ∼ ∈ ( ( 𝐺 × 𝐺 ) / ∼ ) ) → 〈 𝐴 , 𝐵 〉 ∈ ( 𝐺 × 𝐺 ) ) |
10 |
1 9
|
mpan |
⊢ ( [ 〈 𝐴 , 𝐵 〉 ] ∼ ∈ ( ( 𝐺 × 𝐺 ) / ∼ ) → 〈 𝐴 , 𝐵 〉 ∈ ( 𝐺 × 𝐺 ) ) |
11 |
10 2
|
eleq2s |
⊢ ( [ 〈 𝐴 , 𝐵 〉 ] ∼ ∈ 𝐻 → 〈 𝐴 , 𝐵 〉 ∈ ( 𝐺 × 𝐺 ) ) |
12 |
|
opelxp |
⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝐺 × 𝐺 ) ↔ ( 𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐺 ) ) |
13 |
11 12
|
sylib |
⊢ ( [ 〈 𝐴 , 𝐵 〉 ] ∼ ∈ 𝐻 → ( 𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐺 ) ) |
14 |
|
ecelqsdm |
⊢ ( ( dom ∼ = ( 𝐺 × 𝐺 ) ∧ [ 〈 𝐶 , 𝐷 〉 ] ∼ ∈ ( ( 𝐺 × 𝐺 ) / ∼ ) ) → 〈 𝐶 , 𝐷 〉 ∈ ( 𝐺 × 𝐺 ) ) |
15 |
1 14
|
mpan |
⊢ ( [ 〈 𝐶 , 𝐷 〉 ] ∼ ∈ ( ( 𝐺 × 𝐺 ) / ∼ ) → 〈 𝐶 , 𝐷 〉 ∈ ( 𝐺 × 𝐺 ) ) |
16 |
15 2
|
eleq2s |
⊢ ( [ 〈 𝐶 , 𝐷 〉 ] ∼ ∈ 𝐻 → 〈 𝐶 , 𝐷 〉 ∈ ( 𝐺 × 𝐺 ) ) |
17 |
|
opelxp |
⊢ ( 〈 𝐶 , 𝐷 〉 ∈ ( 𝐺 × 𝐺 ) ↔ ( 𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺 ) ) |
18 |
16 17
|
sylib |
⊢ ( [ 〈 𝐶 , 𝐷 〉 ] ∼ ∈ 𝐻 → ( 𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺 ) ) |
19 |
13 18
|
anim12i |
⊢ ( ( [ 〈 𝐴 , 𝐵 〉 ] ∼ ∈ 𝐻 ∧ [ 〈 𝐶 , 𝐷 〉 ] ∼ ∈ 𝐻 ) → ( ( 𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐺 ) ∧ ( 𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺 ) ) ) |
20 |
8 19
|
syl |
⊢ ( [ 〈 𝐴 , 𝐵 〉 ] ∼ 𝑅 [ 〈 𝐶 , 𝐷 〉 ] ∼ → ( ( 𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐺 ) ∧ ( 𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺 ) ) ) |
21 |
4
|
brel |
⊢ ( ( 𝐴 + 𝐷 ) ≤ ( 𝐵 + 𝐶 ) → ( ( 𝐴 + 𝐷 ) ∈ 𝐺 ∧ ( 𝐵 + 𝐶 ) ∈ 𝐺 ) ) |
22 |
6 5
|
ndmovrcl |
⊢ ( ( 𝐴 + 𝐷 ) ∈ 𝐺 → ( 𝐴 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺 ) ) |
23 |
6 5
|
ndmovrcl |
⊢ ( ( 𝐵 + 𝐶 ) ∈ 𝐺 → ( 𝐵 ∈ 𝐺 ∧ 𝐶 ∈ 𝐺 ) ) |
24 |
22 23
|
anim12i |
⊢ ( ( ( 𝐴 + 𝐷 ) ∈ 𝐺 ∧ ( 𝐵 + 𝐶 ) ∈ 𝐺 ) → ( ( 𝐴 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺 ) ∧ ( 𝐵 ∈ 𝐺 ∧ 𝐶 ∈ 𝐺 ) ) ) |
25 |
21 24
|
syl |
⊢ ( ( 𝐴 + 𝐷 ) ≤ ( 𝐵 + 𝐶 ) → ( ( 𝐴 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺 ) ∧ ( 𝐵 ∈ 𝐺 ∧ 𝐶 ∈ 𝐺 ) ) ) |
26 |
|
an42 |
⊢ ( ( ( 𝐴 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺 ) ∧ ( 𝐵 ∈ 𝐺 ∧ 𝐶 ∈ 𝐺 ) ) ↔ ( ( 𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐺 ) ∧ ( 𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺 ) ) ) |
27 |
25 26
|
sylib |
⊢ ( ( 𝐴 + 𝐷 ) ≤ ( 𝐵 + 𝐶 ) → ( ( 𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐺 ) ∧ ( 𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺 ) ) ) |
28 |
20 27 7
|
pm5.21nii |
⊢ ( [ 〈 𝐴 , 𝐵 〉 ] ∼ 𝑅 [ 〈 𝐶 , 𝐷 〉 ] ∼ ↔ ( 𝐴 + 𝐷 ) ≤ ( 𝐵 + 𝐶 ) ) |