Metamath Proof Explorer


Theorem breldm

Description: Membership of first of a binary relation in a domain. (Contributed by NM, 30-Jul-1995)

Ref Expression
Hypotheses opeldm.1 𝐴 ∈ V
opeldm.2 𝐵 ∈ V
Assertion breldm ( 𝐴 𝑅 𝐵𝐴 ∈ dom 𝑅 )

Proof

Step Hyp Ref Expression
1 opeldm.1 𝐴 ∈ V
2 opeldm.2 𝐵 ∈ V
3 df-br ( 𝐴 𝑅 𝐵 ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑅 )
4 1 2 opeldm ( ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑅𝐴 ∈ dom 𝑅 )
5 3 4 sylbi ( 𝐴 𝑅 𝐵𝐴 ∈ dom 𝑅 )