Metamath Proof Explorer
		
		
		
		Description:  Membership of first of a binary relation in a domain.  (Contributed by Glauco Siliprandi, 23-Apr-2023)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | breldmd.1 | ⊢ ( 𝜑  →  𝐴  ∈  𝐶 ) | 
					
						|  |  | breldmd.2 | ⊢ ( 𝜑  →  𝐵  ∈  𝐷 ) | 
					
						|  |  | breldmd.3 | ⊢ ( 𝜑  →  𝐴 𝑅 𝐵 ) | 
				
					|  | Assertion | breldmd | ⊢  ( 𝜑  →  𝐴  ∈  dom  𝑅 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | breldmd.1 | ⊢ ( 𝜑  →  𝐴  ∈  𝐶 ) | 
						
							| 2 |  | breldmd.2 | ⊢ ( 𝜑  →  𝐵  ∈  𝐷 ) | 
						
							| 3 |  | breldmd.3 | ⊢ ( 𝜑  →  𝐴 𝑅 𝐵 ) | 
						
							| 4 |  | breldmg | ⊢ ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐷  ∧  𝐴 𝑅 𝐵 )  →  𝐴  ∈  dom  𝑅 ) | 
						
							| 5 | 1 2 3 4 | syl3anc | ⊢ ( 𝜑  →  𝐴  ∈  dom  𝑅 ) |