Metamath Proof Explorer


Theorem breldmg

Description: Membership of first of a binary relation in a domain. (Contributed by NM, 21-Mar-2007)

Ref Expression
Assertion breldmg ( ( 𝐴𝐶𝐵𝐷𝐴 𝑅 𝐵 ) → 𝐴 ∈ dom 𝑅 )

Proof

Step Hyp Ref Expression
1 breq2 ( 𝑥 = 𝐵 → ( 𝐴 𝑅 𝑥𝐴 𝑅 𝐵 ) )
2 1 spcegv ( 𝐵𝐷 → ( 𝐴 𝑅 𝐵 → ∃ 𝑥 𝐴 𝑅 𝑥 ) )
3 2 imp ( ( 𝐵𝐷𝐴 𝑅 𝐵 ) → ∃ 𝑥 𝐴 𝑅 𝑥 )
4 eldmg ( 𝐴𝐶 → ( 𝐴 ∈ dom 𝑅 ↔ ∃ 𝑥 𝐴 𝑅 𝑥 ) )
5 3 4 syl5ibr ( 𝐴𝐶 → ( ( 𝐵𝐷𝐴 𝑅 𝐵 ) → 𝐴 ∈ dom 𝑅 ) )
6 5 3impib ( ( 𝐴𝐶𝐵𝐷𝐴 𝑅 𝐵 ) → 𝐴 ∈ dom 𝑅 )