Description: Membership of first of a binary relation in a domain. (Contributed by NM, 21-Mar-2007)
Ref | Expression | ||
---|---|---|---|
Assertion | breldmg | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴 𝑅 𝐵 ) → 𝐴 ∈ dom 𝑅 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝐴 𝑅 𝑥 ↔ 𝐴 𝑅 𝐵 ) ) | |
2 | 1 | spcegv | ⊢ ( 𝐵 ∈ 𝐷 → ( 𝐴 𝑅 𝐵 → ∃ 𝑥 𝐴 𝑅 𝑥 ) ) |
3 | 2 | imp | ⊢ ( ( 𝐵 ∈ 𝐷 ∧ 𝐴 𝑅 𝐵 ) → ∃ 𝑥 𝐴 𝑅 𝑥 ) |
4 | eldmg | ⊢ ( 𝐴 ∈ 𝐶 → ( 𝐴 ∈ dom 𝑅 ↔ ∃ 𝑥 𝐴 𝑅 𝑥 ) ) | |
5 | 3 4 | syl5ibr | ⊢ ( 𝐴 ∈ 𝐶 → ( ( 𝐵 ∈ 𝐷 ∧ 𝐴 𝑅 𝐵 ) → 𝐴 ∈ dom 𝑅 ) ) |
6 | 5 | 3impib | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴 𝑅 𝐵 ) → 𝐴 ∈ dom 𝑅 ) |