Description: The second argument of a binary relation belongs to its range. (Contributed by NM, 29-Jun-2008)
Ref | Expression | ||
---|---|---|---|
Assertion | brelrng | ⊢ ( ( 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺 ∧ 𝐴 𝐶 𝐵 ) → 𝐵 ∈ ran 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brcnvg | ⊢ ( ( 𝐵 ∈ 𝐺 ∧ 𝐴 ∈ 𝐹 ) → ( 𝐵 ◡ 𝐶 𝐴 ↔ 𝐴 𝐶 𝐵 ) ) | |
2 | 1 | ancoms | ⊢ ( ( 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺 ) → ( 𝐵 ◡ 𝐶 𝐴 ↔ 𝐴 𝐶 𝐵 ) ) |
3 | 2 | biimp3ar | ⊢ ( ( 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺 ∧ 𝐴 𝐶 𝐵 ) → 𝐵 ◡ 𝐶 𝐴 ) |
4 | breldmg | ⊢ ( ( 𝐵 ∈ 𝐺 ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ◡ 𝐶 𝐴 ) → 𝐵 ∈ dom ◡ 𝐶 ) | |
5 | 4 | 3com12 | ⊢ ( ( 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺 ∧ 𝐵 ◡ 𝐶 𝐴 ) → 𝐵 ∈ dom ◡ 𝐶 ) |
6 | 3 5 | syld3an3 | ⊢ ( ( 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺 ∧ 𝐴 𝐶 𝐵 ) → 𝐵 ∈ dom ◡ 𝐶 ) |
7 | df-rn | ⊢ ran 𝐶 = dom ◡ 𝐶 | |
8 | 6 7 | eleqtrrdi | ⊢ ( ( 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺 ∧ 𝐴 𝐶 𝐵 ) → 𝐵 ∈ ran 𝐶 ) |