Metamath Proof Explorer


Theorem brelrng

Description: The second argument of a binary relation belongs to its range. (Contributed by NM, 29-Jun-2008)

Ref Expression
Assertion brelrng ( ( 𝐴𝐹𝐵𝐺𝐴 𝐶 𝐵 ) → 𝐵 ∈ ran 𝐶 )

Proof

Step Hyp Ref Expression
1 brcnvg ( ( 𝐵𝐺𝐴𝐹 ) → ( 𝐵 𝐶 𝐴𝐴 𝐶 𝐵 ) )
2 1 ancoms ( ( 𝐴𝐹𝐵𝐺 ) → ( 𝐵 𝐶 𝐴𝐴 𝐶 𝐵 ) )
3 2 biimp3ar ( ( 𝐴𝐹𝐵𝐺𝐴 𝐶 𝐵 ) → 𝐵 𝐶 𝐴 )
4 breldmg ( ( 𝐵𝐺𝐴𝐹𝐵 𝐶 𝐴 ) → 𝐵 ∈ dom 𝐶 )
5 4 3com12 ( ( 𝐴𝐹𝐵𝐺𝐵 𝐶 𝐴 ) → 𝐵 ∈ dom 𝐶 )
6 3 5 syld3an3 ( ( 𝐴𝐹𝐵𝐺𝐴 𝐶 𝐵 ) → 𝐵 ∈ dom 𝐶 )
7 df-rn ran 𝐶 = dom 𝐶
8 6 7 eleqtrrdi ( ( 𝐴𝐹𝐵𝐺𝐴 𝐶 𝐵 ) → 𝐵 ∈ ran 𝐶 )