Description: Equinumerosity expressed in terms of dominance and strict dominance. (Contributed by NM, 23-Oct-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | bren2 | ⊢ ( 𝐴 ≈ 𝐵 ↔ ( 𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≺ 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | endom | ⊢ ( 𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵 ) | |
2 | sdomnen | ⊢ ( 𝐴 ≺ 𝐵 → ¬ 𝐴 ≈ 𝐵 ) | |
3 | 2 | con2i | ⊢ ( 𝐴 ≈ 𝐵 → ¬ 𝐴 ≺ 𝐵 ) |
4 | 1 3 | jca | ⊢ ( 𝐴 ≈ 𝐵 → ( 𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≺ 𝐵 ) ) |
5 | brdom2 | ⊢ ( 𝐴 ≼ 𝐵 ↔ ( 𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵 ) ) | |
6 | 5 | biimpi | ⊢ ( 𝐴 ≼ 𝐵 → ( 𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵 ) ) |
7 | 6 | orcanai | ⊢ ( ( 𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≺ 𝐵 ) → 𝐴 ≈ 𝐵 ) |
8 | 4 7 | impbii | ⊢ ( 𝐴 ≈ 𝐵 ↔ ( 𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≺ 𝐵 ) ) |