Metamath Proof Explorer


Theorem bren2

Description: Equinumerosity expressed in terms of dominance and strict dominance. (Contributed by NM, 23-Oct-2004)

Ref Expression
Assertion bren2 ( 𝐴𝐵 ↔ ( 𝐴𝐵 ∧ ¬ 𝐴𝐵 ) )

Proof

Step Hyp Ref Expression
1 endom ( 𝐴𝐵𝐴𝐵 )
2 sdomnen ( 𝐴𝐵 → ¬ 𝐴𝐵 )
3 2 con2i ( 𝐴𝐵 → ¬ 𝐴𝐵 )
4 1 3 jca ( 𝐴𝐵 → ( 𝐴𝐵 ∧ ¬ 𝐴𝐵 ) )
5 brdom2 ( 𝐴𝐵 ↔ ( 𝐴𝐵𝐴𝐵 ) )
6 5 biimpi ( 𝐴𝐵 → ( 𝐴𝐵𝐴𝐵 ) )
7 6 orcanai ( ( 𝐴𝐵 ∧ ¬ 𝐴𝐵 ) → 𝐴𝐵 )
8 4 7 impbii ( 𝐴𝐵 ↔ ( 𝐴𝐵 ∧ ¬ 𝐴𝐵 ) )