Metamath Proof Explorer


Theorem breng

Description: Equinumerosity relation. This variation of bren does not require the Axiom of Union. (Contributed by BTernaryTau, 23-Sep-2024)

Ref Expression
Assertion breng ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴𝐵 ↔ ∃ 𝑓 𝑓 : 𝐴1-1-onto𝐵 ) )

Proof

Step Hyp Ref Expression
1 f1oeq2 ( 𝑥 = 𝐴 → ( 𝑓 : 𝑥1-1-onto𝑦𝑓 : 𝐴1-1-onto𝑦 ) )
2 1 exbidv ( 𝑥 = 𝐴 → ( ∃ 𝑓 𝑓 : 𝑥1-1-onto𝑦 ↔ ∃ 𝑓 𝑓 : 𝐴1-1-onto𝑦 ) )
3 f1oeq3 ( 𝑦 = 𝐵 → ( 𝑓 : 𝐴1-1-onto𝑦𝑓 : 𝐴1-1-onto𝐵 ) )
4 3 exbidv ( 𝑦 = 𝐵 → ( ∃ 𝑓 𝑓 : 𝐴1-1-onto𝑦 ↔ ∃ 𝑓 𝑓 : 𝐴1-1-onto𝐵 ) )
5 df-en ≈ = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑓 𝑓 : 𝑥1-1-onto𝑦 }
6 2 4 5 brabg ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴𝐵 ↔ ∃ 𝑓 𝑓 : 𝐴1-1-onto𝐵 ) )