Metamath Proof Explorer


Theorem breprexplemb

Description: Lemma for breprexp (closure). (Contributed by Thierry Arnoux, 7-Dec-2021)

Ref Expression
Hypotheses breprexp.n ( 𝜑𝑁 ∈ ℕ0 )
breprexp.s ( 𝜑𝑆 ∈ ℕ0 )
breprexp.z ( 𝜑𝑍 ∈ ℂ )
breprexp.h ( 𝜑𝐿 : ( 0 ..^ 𝑆 ) ⟶ ( ℂ ↑m ℕ ) )
breprexplemb.x ( 𝜑𝑋 ∈ ( 0 ..^ 𝑆 ) )
breprexplemb.y ( 𝜑𝑌 ∈ ℕ )
Assertion breprexplemb ( 𝜑 → ( ( 𝐿𝑋 ) ‘ 𝑌 ) ∈ ℂ )

Proof

Step Hyp Ref Expression
1 breprexp.n ( 𝜑𝑁 ∈ ℕ0 )
2 breprexp.s ( 𝜑𝑆 ∈ ℕ0 )
3 breprexp.z ( 𝜑𝑍 ∈ ℂ )
4 breprexp.h ( 𝜑𝐿 : ( 0 ..^ 𝑆 ) ⟶ ( ℂ ↑m ℕ ) )
5 breprexplemb.x ( 𝜑𝑋 ∈ ( 0 ..^ 𝑆 ) )
6 breprexplemb.y ( 𝜑𝑌 ∈ ℕ )
7 4 5 ffvelrnd ( 𝜑 → ( 𝐿𝑋 ) ∈ ( ℂ ↑m ℕ ) )
8 cnex ℂ ∈ V
9 nnex ℕ ∈ V
10 8 9 elmap ( ( 𝐿𝑋 ) ∈ ( ℂ ↑m ℕ ) ↔ ( 𝐿𝑋 ) : ℕ ⟶ ℂ )
11 7 10 sylib ( 𝜑 → ( 𝐿𝑋 ) : ℕ ⟶ ℂ )
12 11 6 ffvelrnd ( 𝜑 → ( ( 𝐿𝑋 ) ‘ 𝑌 ) ∈ ℂ )