Description: Lemma for breprexp (closure). (Contributed by Thierry Arnoux, 7-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | breprexp.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | |
breprexp.s | ⊢ ( 𝜑 → 𝑆 ∈ ℕ0 ) | ||
breprexp.z | ⊢ ( 𝜑 → 𝑍 ∈ ℂ ) | ||
breprexp.h | ⊢ ( 𝜑 → 𝐿 : ( 0 ..^ 𝑆 ) ⟶ ( ℂ ↑m ℕ ) ) | ||
breprexplemb.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 0 ..^ 𝑆 ) ) | ||
breprexplemb.y | ⊢ ( 𝜑 → 𝑌 ∈ ℕ ) | ||
Assertion | breprexplemb | ⊢ ( 𝜑 → ( ( 𝐿 ‘ 𝑋 ) ‘ 𝑌 ) ∈ ℂ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breprexp.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | |
2 | breprexp.s | ⊢ ( 𝜑 → 𝑆 ∈ ℕ0 ) | |
3 | breprexp.z | ⊢ ( 𝜑 → 𝑍 ∈ ℂ ) | |
4 | breprexp.h | ⊢ ( 𝜑 → 𝐿 : ( 0 ..^ 𝑆 ) ⟶ ( ℂ ↑m ℕ ) ) | |
5 | breprexplemb.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 0 ..^ 𝑆 ) ) | |
6 | breprexplemb.y | ⊢ ( 𝜑 → 𝑌 ∈ ℕ ) | |
7 | 4 5 | ffvelrnd | ⊢ ( 𝜑 → ( 𝐿 ‘ 𝑋 ) ∈ ( ℂ ↑m ℕ ) ) |
8 | cnex | ⊢ ℂ ∈ V | |
9 | nnex | ⊢ ℕ ∈ V | |
10 | 8 9 | elmap | ⊢ ( ( 𝐿 ‘ 𝑋 ) ∈ ( ℂ ↑m ℕ ) ↔ ( 𝐿 ‘ 𝑋 ) : ℕ ⟶ ℂ ) |
11 | 7 10 | sylib | ⊢ ( 𝜑 → ( 𝐿 ‘ 𝑋 ) : ℕ ⟶ ℂ ) |
12 | 11 6 | ffvelrnd | ⊢ ( 𝜑 → ( ( 𝐿 ‘ 𝑋 ) ‘ 𝑌 ) ∈ ℂ ) |