Description: Equality theorem for binary relations. (Contributed by NM, 4-Jun-1995)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | breq | ⊢ ( 𝑅 = 𝑆 → ( 𝐴 𝑅 𝐵 ↔ 𝐴 𝑆 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 | ⊢ ( 𝑅 = 𝑆 → ( 〈 𝐴 , 𝐵 〉 ∈ 𝑅 ↔ 〈 𝐴 , 𝐵 〉 ∈ 𝑆 ) ) | |
| 2 | df-br | ⊢ ( 𝐴 𝑅 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ 𝑅 ) | |
| 3 | df-br | ⊢ ( 𝐴 𝑆 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ 𝑆 ) | |
| 4 | 1 2 3 | 3bitr4g | ⊢ ( 𝑅 = 𝑆 → ( 𝐴 𝑅 𝐵 ↔ 𝐴 𝑆 𝐵 ) ) |