Metamath Proof Explorer


Theorem breq1

Description: Equality theorem for a binary relation. (Contributed by NM, 31-Dec-1993)

Ref Expression
Assertion breq1 ( 𝐴 = 𝐵 → ( 𝐴 𝑅 𝐶𝐵 𝑅 𝐶 ) )

Proof

Step Hyp Ref Expression
1 opeq1 ( 𝐴 = 𝐵 → ⟨ 𝐴 , 𝐶 ⟩ = ⟨ 𝐵 , 𝐶 ⟩ )
2 1 eleq1d ( 𝐴 = 𝐵 → ( ⟨ 𝐴 , 𝐶 ⟩ ∈ 𝑅 ↔ ⟨ 𝐵 , 𝐶 ⟩ ∈ 𝑅 ) )
3 df-br ( 𝐴 𝑅 𝐶 ↔ ⟨ 𝐴 , 𝐶 ⟩ ∈ 𝑅 )
4 df-br ( 𝐵 𝑅 𝐶 ↔ ⟨ 𝐵 , 𝐶 ⟩ ∈ 𝑅 )
5 2 3 4 3bitr4g ( 𝐴 = 𝐵 → ( 𝐴 𝑅 𝐶𝐵 𝑅 𝐶 ) )