Description: Equality theorem for a binary relation. (Contributed by NM, 31-Dec-1993)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | breq1 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 𝑅 𝐶 ↔ 𝐵 𝑅 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1 | ⊢ ( 𝐴 = 𝐵 → 〈 𝐴 , 𝐶 〉 = 〈 𝐵 , 𝐶 〉 ) | |
| 2 | 1 | eleq1d | ⊢ ( 𝐴 = 𝐵 → ( 〈 𝐴 , 𝐶 〉 ∈ 𝑅 ↔ 〈 𝐵 , 𝐶 〉 ∈ 𝑅 ) ) |
| 3 | df-br | ⊢ ( 𝐴 𝑅 𝐶 ↔ 〈 𝐴 , 𝐶 〉 ∈ 𝑅 ) | |
| 4 | df-br | ⊢ ( 𝐵 𝑅 𝐶 ↔ 〈 𝐵 , 𝐶 〉 ∈ 𝑅 ) | |
| 5 | 2 3 4 | 3bitr4g | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 𝑅 𝐶 ↔ 𝐵 𝑅 𝐶 ) ) |