Description: Equality theorem for a binary relation. (Contributed by NM, 8-Feb-1996)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | breq12 | ⊢ ( ( 𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ) → ( 𝐴 𝑅 𝐶 ↔ 𝐵 𝑅 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 𝑅 𝐶 ↔ 𝐵 𝑅 𝐶 ) ) | |
| 2 | breq2 | ⊢ ( 𝐶 = 𝐷 → ( 𝐵 𝑅 𝐶 ↔ 𝐵 𝑅 𝐷 ) ) | |
| 3 | 1 2 | sylan9bb | ⊢ ( ( 𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ) → ( 𝐴 𝑅 𝐶 ↔ 𝐵 𝑅 𝐷 ) ) |