Metamath Proof Explorer


Theorem breq123d

Description: Equality deduction for a binary relation. (Contributed by NM, 29-Oct-2011)

Ref Expression
Hypotheses breq1d.1 ( 𝜑𝐴 = 𝐵 )
breq123d.2 ( 𝜑𝑅 = 𝑆 )
breq123d.3 ( 𝜑𝐶 = 𝐷 )
Assertion breq123d ( 𝜑 → ( 𝐴 𝑅 𝐶𝐵 𝑆 𝐷 ) )

Proof

Step Hyp Ref Expression
1 breq1d.1 ( 𝜑𝐴 = 𝐵 )
2 breq123d.2 ( 𝜑𝑅 = 𝑆 )
3 breq123d.3 ( 𝜑𝐶 = 𝐷 )
4 1 3 breq12d ( 𝜑 → ( 𝐴 𝑅 𝐶𝐵 𝑅 𝐷 ) )
5 2 breqd ( 𝜑 → ( 𝐵 𝑅 𝐷𝐵 𝑆 𝐷 ) )
6 4 5 bitrd ( 𝜑 → ( 𝐴 𝑅 𝐶𝐵 𝑆 𝐷 ) )