Metamath Proof Explorer


Theorem breq12d

Description: Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996) (Proof shortened by Andrew Salmon, 9-Jul-2011)

Ref Expression
Hypotheses breq1d.1 ( 𝜑𝐴 = 𝐵 )
breq12d.2 ( 𝜑𝐶 = 𝐷 )
Assertion breq12d ( 𝜑 → ( 𝐴 𝑅 𝐶𝐵 𝑅 𝐷 ) )

Proof

Step Hyp Ref Expression
1 breq1d.1 ( 𝜑𝐴 = 𝐵 )
2 breq12d.2 ( 𝜑𝐶 = 𝐷 )
3 breq12 ( ( 𝐴 = 𝐵𝐶 = 𝐷 ) → ( 𝐴 𝑅 𝐶𝐵 𝑅 𝐷 ) )
4 1 2 3 syl2anc ( 𝜑 → ( 𝐴 𝑅 𝐶𝐵 𝑅 𝐷 ) )