Metamath Proof Explorer


Theorem breq12i

Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996) (Proof shortened by Eric Schmidt, 4-Apr-2007)

Ref Expression
Hypotheses breq1i.1 𝐴 = 𝐵
breq12i.2 𝐶 = 𝐷
Assertion breq12i ( 𝐴 𝑅 𝐶𝐵 𝑅 𝐷 )

Proof

Step Hyp Ref Expression
1 breq1i.1 𝐴 = 𝐵
2 breq12i.2 𝐶 = 𝐷
3 breq12 ( ( 𝐴 = 𝐵𝐶 = 𝐷 ) → ( 𝐴 𝑅 𝐶𝐵 𝑅 𝐷 ) )
4 1 2 3 mp2an ( 𝐴 𝑅 𝐶𝐵 𝑅 𝐷 )