Description: Equality theorem for a binary relation. (Contributed by NM, 31-Dec-1993)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | breq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝐶 𝑅 𝐴 ↔ 𝐶 𝑅 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq2 | ⊢ ( 𝐴 = 𝐵 → 〈 𝐶 , 𝐴 〉 = 〈 𝐶 , 𝐵 〉 ) | |
| 2 | 1 | eleq1d | ⊢ ( 𝐴 = 𝐵 → ( 〈 𝐶 , 𝐴 〉 ∈ 𝑅 ↔ 〈 𝐶 , 𝐵 〉 ∈ 𝑅 ) ) |
| 3 | df-br | ⊢ ( 𝐶 𝑅 𝐴 ↔ 〈 𝐶 , 𝐴 〉 ∈ 𝑅 ) | |
| 4 | df-br | ⊢ ( 𝐶 𝑅 𝐵 ↔ 〈 𝐶 , 𝐵 〉 ∈ 𝑅 ) | |
| 5 | 2 3 4 | 3bitr4g | ⊢ ( 𝐴 = 𝐵 → ( 𝐶 𝑅 𝐴 ↔ 𝐶 𝑅 𝐵 ) ) |