Metamath Proof Explorer


Theorem breq2i

Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996)

Ref Expression
Hypothesis breq1i.1 𝐴 = 𝐵
Assertion breq2i ( 𝐶 𝑅 𝐴𝐶 𝑅 𝐵 )

Proof

Step Hyp Ref Expression
1 breq1i.1 𝐴 = 𝐵
2 breq2 ( 𝐴 = 𝐵 → ( 𝐶 𝑅 𝐴𝐶 𝑅 𝐵 ) )
3 1 2 ax-mp ( 𝐶 𝑅 𝐴𝐶 𝑅 𝐵 )