Metamath Proof Explorer


Theorem breqan12rd

Description: Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996)

Ref Expression
Hypotheses breq1d.1 ( 𝜑𝐴 = 𝐵 )
breqan12i.2 ( 𝜓𝐶 = 𝐷 )
Assertion breqan12rd ( ( 𝜓𝜑 ) → ( 𝐴 𝑅 𝐶𝐵 𝑅 𝐷 ) )

Proof

Step Hyp Ref Expression
1 breq1d.1 ( 𝜑𝐴 = 𝐵 )
2 breqan12i.2 ( 𝜓𝐶 = 𝐷 )
3 1 2 breqan12d ( ( 𝜑𝜓 ) → ( 𝐴 𝑅 𝐶𝐵 𝑅 𝐷 ) )
4 3 ancoms ( ( 𝜓𝜑 ) → ( 𝐴 𝑅 𝐶𝐵 𝑅 𝐷 ) )