Metamath Proof Explorer


Theorem breqtrdi

Description: A chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999)

Ref Expression
Hypotheses breqtrdi.1 ( 𝜑𝐴 𝑅 𝐵 )
breqtrdi.2 𝐵 = 𝐶
Assertion breqtrdi ( 𝜑𝐴 𝑅 𝐶 )

Proof

Step Hyp Ref Expression
1 breqtrdi.1 ( 𝜑𝐴 𝑅 𝐵 )
2 breqtrdi.2 𝐵 = 𝐶
3 eqid 𝐴 = 𝐴
4 1 3 2 3brtr3g ( 𝜑𝐴 𝑅 𝐶 )