Metamath Proof Explorer


Theorem breqtrri

Description: Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999)

Ref Expression
Hypotheses breqtrr.1 𝐴 𝑅 𝐵
breqtrr.2 𝐶 = 𝐵
Assertion breqtrri 𝐴 𝑅 𝐶

Proof

Step Hyp Ref Expression
1 breqtrr.1 𝐴 𝑅 𝐵
2 breqtrr.2 𝐶 = 𝐵
3 2 eqcomi 𝐵 = 𝐶
4 1 3 breqtri 𝐴 𝑅 𝐶