Metamath Proof Explorer


Theorem brfi1ind

Description: Properties of a binary relation with a finite first component, proven by finite induction on the size of the first component. (Contributed by Alexander van der Vekens, 7-Jan-2018) (Revised by AV, 28-Mar-2021)

Ref Expression
Hypotheses brfi1ind.r Rel 𝐺
brfi1ind.f 𝐹 ∈ V
brfi1ind.1 ( ( 𝑣 = 𝑉𝑒 = 𝐸 ) → ( 𝜓𝜑 ) )
brfi1ind.2 ( ( 𝑣 = 𝑤𝑒 = 𝑓 ) → ( 𝜓𝜃 ) )
brfi1ind.3 ( ( 𝑣 𝐺 𝑒𝑛𝑣 ) → ( 𝑣 ∖ { 𝑛 } ) 𝐺 𝐹 )
brfi1ind.4 ( ( 𝑤 = ( 𝑣 ∖ { 𝑛 } ) ∧ 𝑓 = 𝐹 ) → ( 𝜃𝜒 ) )
brfi1ind.base ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 0 ) → 𝜓 )
brfi1ind.step ( ( ( ( 𝑦 + 1 ) ∈ ℕ0 ∧ ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ∧ 𝑛𝑣 ) ) ∧ 𝜒 ) → 𝜓 )
Assertion brfi1ind ( ( 𝑉 𝐺 𝐸𝑉 ∈ Fin ) → 𝜑 )

Proof

Step Hyp Ref Expression
1 brfi1ind.r Rel 𝐺
2 brfi1ind.f 𝐹 ∈ V
3 brfi1ind.1 ( ( 𝑣 = 𝑉𝑒 = 𝐸 ) → ( 𝜓𝜑 ) )
4 brfi1ind.2 ( ( 𝑣 = 𝑤𝑒 = 𝑓 ) → ( 𝜓𝜃 ) )
5 brfi1ind.3 ( ( 𝑣 𝐺 𝑒𝑛𝑣 ) → ( 𝑣 ∖ { 𝑛 } ) 𝐺 𝐹 )
6 brfi1ind.4 ( ( 𝑤 = ( 𝑣 ∖ { 𝑛 } ) ∧ 𝑓 = 𝐹 ) → ( 𝜃𝜒 ) )
7 brfi1ind.base ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 0 ) → 𝜓 )
8 brfi1ind.step ( ( ( ( 𝑦 + 1 ) ∈ ℕ0 ∧ ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ∧ 𝑛𝑣 ) ) ∧ 𝜒 ) → 𝜓 )
9 hashge0 ( 𝑉 ∈ Fin → 0 ≤ ( ♯ ‘ 𝑉 ) )
10 9 adantl ( ( 𝑉 𝐺 𝐸𝑉 ∈ Fin ) → 0 ≤ ( ♯ ‘ 𝑉 ) )
11 0nn0 0 ∈ ℕ0
12 1 2 11 3 4 5 6 7 8 brfi1uzind ( ( 𝑉 𝐺 𝐸𝑉 ∈ Fin ∧ 0 ≤ ( ♯ ‘ 𝑉 ) ) → 𝜑 )
13 10 12 mpd3an3 ( ( 𝑉 𝐺 𝐸𝑉 ∈ Fin ) → 𝜑 )