Step |
Hyp |
Ref |
Expression |
1 |
|
brfi1uzind.r |
⊢ Rel 𝐺 |
2 |
|
brfi1uzind.f |
⊢ 𝐹 ∈ V |
3 |
|
brfi1uzind.l |
⊢ 𝐿 ∈ ℕ0 |
4 |
|
brfi1uzind.1 |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → ( 𝜓 ↔ 𝜑 ) ) |
5 |
|
brfi1uzind.2 |
⊢ ( ( 𝑣 = 𝑤 ∧ 𝑒 = 𝑓 ) → ( 𝜓 ↔ 𝜃 ) ) |
6 |
|
brfi1uzind.3 |
⊢ ( ( 𝑣 𝐺 𝑒 ∧ 𝑛 ∈ 𝑣 ) → ( 𝑣 ∖ { 𝑛 } ) 𝐺 𝐹 ) |
7 |
|
brfi1uzind.4 |
⊢ ( ( 𝑤 = ( 𝑣 ∖ { 𝑛 } ) ∧ 𝑓 = 𝐹 ) → ( 𝜃 ↔ 𝜒 ) ) |
8 |
|
brfi1uzind.base |
⊢ ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 𝐿 ) → 𝜓 ) |
9 |
|
brfi1uzind.step |
⊢ ( ( ( ( 𝑦 + 1 ) ∈ ℕ0 ∧ ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ∧ 𝑛 ∈ 𝑣 ) ) ∧ 𝜒 ) → 𝜓 ) |
10 |
1
|
brrelex12i |
⊢ ( 𝑉 𝐺 𝐸 → ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ) |
11 |
|
simpl |
⊢ ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → 𝑉 ∈ V ) |
12 |
|
simplr |
⊢ ( ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ 𝑎 = 𝑉 ) → 𝐸 ∈ V ) |
13 |
|
breq12 |
⊢ ( ( 𝑎 = 𝑉 ∧ 𝑏 = 𝐸 ) → ( 𝑎 𝐺 𝑏 ↔ 𝑉 𝐺 𝐸 ) ) |
14 |
13
|
adantll |
⊢ ( ( ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ 𝑎 = 𝑉 ) ∧ 𝑏 = 𝐸 ) → ( 𝑎 𝐺 𝑏 ↔ 𝑉 𝐺 𝐸 ) ) |
15 |
12 14
|
sbcied |
⊢ ( ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ 𝑎 = 𝑉 ) → ( [ 𝐸 / 𝑏 ] 𝑎 𝐺 𝑏 ↔ 𝑉 𝐺 𝐸 ) ) |
16 |
11 15
|
sbcied |
⊢ ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → ( [ 𝑉 / 𝑎 ] [ 𝐸 / 𝑏 ] 𝑎 𝐺 𝑏 ↔ 𝑉 𝐺 𝐸 ) ) |
17 |
16
|
biimprcd |
⊢ ( 𝑉 𝐺 𝐸 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → [ 𝑉 / 𝑎 ] [ 𝐸 / 𝑏 ] 𝑎 𝐺 𝑏 ) ) |
18 |
10 17
|
mpd |
⊢ ( 𝑉 𝐺 𝐸 → [ 𝑉 / 𝑎 ] [ 𝐸 / 𝑏 ] 𝑎 𝐺 𝑏 ) |
19 |
|
vex |
⊢ 𝑣 ∈ V |
20 |
|
vex |
⊢ 𝑒 ∈ V |
21 |
|
breq12 |
⊢ ( ( 𝑎 = 𝑣 ∧ 𝑏 = 𝑒 ) → ( 𝑎 𝐺 𝑏 ↔ 𝑣 𝐺 𝑒 ) ) |
22 |
19 20 21
|
sbc2ie |
⊢ ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝑎 𝐺 𝑏 ↔ 𝑣 𝐺 𝑒 ) |
23 |
19
|
difexi |
⊢ ( 𝑣 ∖ { 𝑛 } ) ∈ V |
24 |
|
breq12 |
⊢ ( ( 𝑎 = ( 𝑣 ∖ { 𝑛 } ) ∧ 𝑏 = 𝐹 ) → ( 𝑎 𝐺 𝑏 ↔ ( 𝑣 ∖ { 𝑛 } ) 𝐺 𝐹 ) ) |
25 |
23 2 24
|
sbc2ie |
⊢ ( [ ( 𝑣 ∖ { 𝑛 } ) / 𝑎 ] [ 𝐹 / 𝑏 ] 𝑎 𝐺 𝑏 ↔ ( 𝑣 ∖ { 𝑛 } ) 𝐺 𝐹 ) |
26 |
6 25
|
sylibr |
⊢ ( ( 𝑣 𝐺 𝑒 ∧ 𝑛 ∈ 𝑣 ) → [ ( 𝑣 ∖ { 𝑛 } ) / 𝑎 ] [ 𝐹 / 𝑏 ] 𝑎 𝐺 𝑏 ) |
27 |
22 26
|
sylanb |
⊢ ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝑎 𝐺 𝑏 ∧ 𝑛 ∈ 𝑣 ) → [ ( 𝑣 ∖ { 𝑛 } ) / 𝑎 ] [ 𝐹 / 𝑏 ] 𝑎 𝐺 𝑏 ) |
28 |
22 8
|
sylanb |
⊢ ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝑎 𝐺 𝑏 ∧ ( ♯ ‘ 𝑣 ) = 𝐿 ) → 𝜓 ) |
29 |
22
|
3anbi1i |
⊢ ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝑎 𝐺 𝑏 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ∧ 𝑛 ∈ 𝑣 ) ↔ ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ∧ 𝑛 ∈ 𝑣 ) ) |
30 |
29
|
anbi2i |
⊢ ( ( ( 𝑦 + 1 ) ∈ ℕ0 ∧ ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝑎 𝐺 𝑏 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ∧ 𝑛 ∈ 𝑣 ) ) ↔ ( ( 𝑦 + 1 ) ∈ ℕ0 ∧ ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ∧ 𝑛 ∈ 𝑣 ) ) ) |
31 |
30 9
|
sylanb |
⊢ ( ( ( ( 𝑦 + 1 ) ∈ ℕ0 ∧ ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝑎 𝐺 𝑏 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ∧ 𝑛 ∈ 𝑣 ) ) ∧ 𝜒 ) → 𝜓 ) |
32 |
2 3 4 5 27 7 28 31
|
fi1uzind |
⊢ ( ( [ 𝑉 / 𝑎 ] [ 𝐸 / 𝑏 ] 𝑎 𝐺 𝑏 ∧ 𝑉 ∈ Fin ∧ 𝐿 ≤ ( ♯ ‘ 𝑉 ) ) → 𝜑 ) |
33 |
18 32
|
syl3an1 |
⊢ ( ( 𝑉 𝐺 𝐸 ∧ 𝑉 ∈ Fin ∧ 𝐿 ≤ ( ♯ ‘ 𝑉 ) ) → 𝜑 ) |