Step |
Hyp |
Ref |
Expression |
1 |
|
brfvopab.1 |
⊢ ( 𝑋 ∈ V → ( 𝐹 ‘ 𝑋 ) = { 〈 𝑦 , 𝑧 〉 ∣ 𝜑 } ) |
2 |
1
|
breqd |
⊢ ( 𝑋 ∈ V → ( 𝐴 ( 𝐹 ‘ 𝑋 ) 𝐵 ↔ 𝐴 { 〈 𝑦 , 𝑧 〉 ∣ 𝜑 } 𝐵 ) ) |
3 |
|
brabv |
⊢ ( 𝐴 { 〈 𝑦 , 𝑧 〉 ∣ 𝜑 } 𝐵 → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
4 |
2 3
|
syl6bi |
⊢ ( 𝑋 ∈ V → ( 𝐴 ( 𝐹 ‘ 𝑋 ) 𝐵 → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) ) |
5 |
4
|
imdistani |
⊢ ( ( 𝑋 ∈ V ∧ 𝐴 ( 𝐹 ‘ 𝑋 ) 𝐵 ) → ( 𝑋 ∈ V ∧ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) ) |
6 |
|
3anass |
⊢ ( ( 𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V ) ↔ ( 𝑋 ∈ V ∧ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) ) |
7 |
5 6
|
sylibr |
⊢ ( ( 𝑋 ∈ V ∧ 𝐴 ( 𝐹 ‘ 𝑋 ) 𝐵 ) → ( 𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
8 |
7
|
ex |
⊢ ( 𝑋 ∈ V → ( 𝐴 ( 𝐹 ‘ 𝑋 ) 𝐵 → ( 𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) ) |
9 |
|
fvprc |
⊢ ( ¬ 𝑋 ∈ V → ( 𝐹 ‘ 𝑋 ) = ∅ ) |
10 |
|
breq |
⊢ ( ( 𝐹 ‘ 𝑋 ) = ∅ → ( 𝐴 ( 𝐹 ‘ 𝑋 ) 𝐵 ↔ 𝐴 ∅ 𝐵 ) ) |
11 |
|
br0 |
⊢ ¬ 𝐴 ∅ 𝐵 |
12 |
11
|
pm2.21i |
⊢ ( 𝐴 ∅ 𝐵 → ( 𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
13 |
10 12
|
syl6bi |
⊢ ( ( 𝐹 ‘ 𝑋 ) = ∅ → ( 𝐴 ( 𝐹 ‘ 𝑋 ) 𝐵 → ( 𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) ) |
14 |
9 13
|
syl |
⊢ ( ¬ 𝑋 ∈ V → ( 𝐴 ( 𝐹 ‘ 𝑋 ) 𝐵 → ( 𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) ) |
15 |
8 14
|
pm2.61i |
⊢ ( 𝐴 ( 𝐹 ‘ 𝑋 ) 𝐵 → ( 𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |