Metamath Proof Explorer


Theorem brfvopab

Description: The classes involved in a binary relation of a function value which is an ordered-pair class abstraction are sets. (Contributed by AV, 7-Jan-2021)

Ref Expression
Hypothesis brfvopab.1 ( 𝑋 ∈ V → ( 𝐹𝑋 ) = { ⟨ 𝑦 , 𝑧 ⟩ ∣ 𝜑 } )
Assertion brfvopab ( 𝐴 ( 𝐹𝑋 ) 𝐵 → ( 𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V ) )

Proof

Step Hyp Ref Expression
1 brfvopab.1 ( 𝑋 ∈ V → ( 𝐹𝑋 ) = { ⟨ 𝑦 , 𝑧 ⟩ ∣ 𝜑 } )
2 1 breqd ( 𝑋 ∈ V → ( 𝐴 ( 𝐹𝑋 ) 𝐵𝐴 { ⟨ 𝑦 , 𝑧 ⟩ ∣ 𝜑 } 𝐵 ) )
3 brabv ( 𝐴 { ⟨ 𝑦 , 𝑧 ⟩ ∣ 𝜑 } 𝐵 → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )
4 2 3 syl6bi ( 𝑋 ∈ V → ( 𝐴 ( 𝐹𝑋 ) 𝐵 → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) )
5 4 imdistani ( ( 𝑋 ∈ V ∧ 𝐴 ( 𝐹𝑋 ) 𝐵 ) → ( 𝑋 ∈ V ∧ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) )
6 3anass ( ( 𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V ) ↔ ( 𝑋 ∈ V ∧ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) )
7 5 6 sylibr ( ( 𝑋 ∈ V ∧ 𝐴 ( 𝐹𝑋 ) 𝐵 ) → ( 𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V ) )
8 7 ex ( 𝑋 ∈ V → ( 𝐴 ( 𝐹𝑋 ) 𝐵 → ( 𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) )
9 fvprc ( ¬ 𝑋 ∈ V → ( 𝐹𝑋 ) = ∅ )
10 breq ( ( 𝐹𝑋 ) = ∅ → ( 𝐴 ( 𝐹𝑋 ) 𝐵𝐴𝐵 ) )
11 br0 ¬ 𝐴𝐵
12 11 pm2.21i ( 𝐴𝐵 → ( 𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V ) )
13 10 12 syl6bi ( ( 𝐹𝑋 ) = ∅ → ( 𝐴 ( 𝐹𝑋 ) 𝐵 → ( 𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) )
14 9 13 syl ( ¬ 𝑋 ∈ V → ( 𝐴 ( 𝐹𝑋 ) 𝐵 → ( 𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) )
15 8 14 pm2.61i ( 𝐴 ( 𝐹𝑋 ) 𝐵 → ( 𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V ) )