Metamath Proof Explorer


Theorem brif1

Description: Move a relation inside and outside the conditional operator. (Contributed by SN, 14-Aug-2024)

Ref Expression
Assertion brif1 ( if ( 𝜑 , 𝐴 , 𝐵 ) 𝑅 𝐶 ↔ if- ( 𝜑 , 𝐴 𝑅 𝐶 , 𝐵 𝑅 𝐶 ) )

Proof

Step Hyp Ref Expression
1 iftrue ( 𝜑 → if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐴 )
2 1 breq1d ( 𝜑 → ( if ( 𝜑 , 𝐴 , 𝐵 ) 𝑅 𝐶𝐴 𝑅 𝐶 ) )
3 iffalse ( ¬ 𝜑 → if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐵 )
4 3 breq1d ( ¬ 𝜑 → ( if ( 𝜑 , 𝐴 , 𝐵 ) 𝑅 𝐶𝐵 𝑅 𝐶 ) )
5 2 4 casesifp ( if ( 𝜑 , 𝐴 , 𝐵 ) 𝑅 𝐶 ↔ if- ( 𝜑 , 𝐴 𝑅 𝐶 , 𝐵 𝑅 𝐶 ) )