Metamath Proof Explorer


Theorem brimralrspcev

Description: Restricted existential specialization with a restricted universal quantifier over an implication with a relation in the antecedent, closed form. (Contributed by AV, 20-Aug-2022)

Ref Expression
Assertion brimralrspcev ( ( 𝐵𝑋 ∧ ∀ 𝑦𝑌 ( ( 𝜑𝐴 𝑅 𝐵 ) → 𝜓 ) ) → ∃ 𝑥𝑋𝑦𝑌 ( ( 𝜑𝐴 𝑅 𝑥 ) → 𝜓 ) )

Proof

Step Hyp Ref Expression
1 breq2 ( 𝑥 = 𝐵 → ( 𝐴 𝑅 𝑥𝐴 𝑅 𝐵 ) )
2 1 anbi2d ( 𝑥 = 𝐵 → ( ( 𝜑𝐴 𝑅 𝑥 ) ↔ ( 𝜑𝐴 𝑅 𝐵 ) ) )
3 2 rspceaimv ( ( 𝐵𝑋 ∧ ∀ 𝑦𝑌 ( ( 𝜑𝐴 𝑅 𝐵 ) → 𝜓 ) ) → ∃ 𝑥𝑋𝑦𝑌 ( ( 𝜑𝐴 𝑅 𝑥 ) → 𝜓 ) )