Metamath Proof Explorer


Theorem brinxp

Description: Intersection of binary relation with Cartesian product. (Contributed by NM, 9-Mar-1997)

Ref Expression
Assertion brinxp ( ( 𝐴𝐶𝐵𝐷 ) → ( 𝐴 𝑅 𝐵𝐴 ( 𝑅 ∩ ( 𝐶 × 𝐷 ) ) 𝐵 ) )

Proof

Step Hyp Ref Expression
1 brinxp2 ( 𝐴 ( 𝑅 ∩ ( 𝐶 × 𝐷 ) ) 𝐵 ↔ ( ( 𝐴𝐶𝐵𝐷 ) ∧ 𝐴 𝑅 𝐵 ) )
2 1 baibr ( ( 𝐴𝐶𝐵𝐷 ) → ( 𝐴 𝑅 𝐵𝐴 ( 𝑅 ∩ ( 𝐶 × 𝐷 ) ) 𝐵 ) )