Step |
Hyp |
Ref |
Expression |
1 |
|
brinxper.r |
⊢ ( 𝑥 ∈ 𝑉 → 𝑥 ∼ 𝑥 ) |
2 |
|
brinxper.s |
⊢ ( 𝑥 ∈ 𝑉 → ( 𝑥 ∼ 𝑦 → 𝑦 ∼ 𝑥 ) ) |
3 |
|
brinxper.t |
⊢ ( 𝑥 ∈ 𝑉 → ( ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) → 𝑥 ∼ 𝑧 ) ) |
4 |
|
relinxp |
⊢ Rel ( ∼ ∩ ( 𝑉 × 𝑉 ) ) |
5 |
|
brxp |
⊢ ( 𝑥 ( 𝑉 × 𝑉 ) 𝑦 ↔ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) |
6 |
2
|
adantr |
⊢ ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑥 ∼ 𝑦 → 𝑦 ∼ 𝑥 ) ) |
7 |
|
ancom |
⊢ ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ↔ ( 𝑦 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉 ) ) |
8 |
|
brxp |
⊢ ( 𝑦 ( 𝑉 × 𝑉 ) 𝑥 ↔ ( 𝑦 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉 ) ) |
9 |
7 8
|
sylbb2 |
⊢ ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → 𝑦 ( 𝑉 × 𝑉 ) 𝑥 ) |
10 |
6 9
|
jctird |
⊢ ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑥 ∼ 𝑦 → ( 𝑦 ∼ 𝑥 ∧ 𝑦 ( 𝑉 × 𝑉 ) 𝑥 ) ) ) |
11 |
5 10
|
sylbi |
⊢ ( 𝑥 ( 𝑉 × 𝑉 ) 𝑦 → ( 𝑥 ∼ 𝑦 → ( 𝑦 ∼ 𝑥 ∧ 𝑦 ( 𝑉 × 𝑉 ) 𝑥 ) ) ) |
12 |
11
|
impcom |
⊢ ( ( 𝑥 ∼ 𝑦 ∧ 𝑥 ( 𝑉 × 𝑉 ) 𝑦 ) → ( 𝑦 ∼ 𝑥 ∧ 𝑦 ( 𝑉 × 𝑉 ) 𝑥 ) ) |
13 |
|
brin |
⊢ ( 𝑥 ( ∼ ∩ ( 𝑉 × 𝑉 ) ) 𝑦 ↔ ( 𝑥 ∼ 𝑦 ∧ 𝑥 ( 𝑉 × 𝑉 ) 𝑦 ) ) |
14 |
|
brin |
⊢ ( 𝑦 ( ∼ ∩ ( 𝑉 × 𝑉 ) ) 𝑥 ↔ ( 𝑦 ∼ 𝑥 ∧ 𝑦 ( 𝑉 × 𝑉 ) 𝑥 ) ) |
15 |
12 13 14
|
3imtr4i |
⊢ ( 𝑥 ( ∼ ∩ ( 𝑉 × 𝑉 ) ) 𝑦 → 𝑦 ( ∼ ∩ ( 𝑉 × 𝑉 ) ) 𝑥 ) |
16 |
|
brin |
⊢ ( 𝑦 ( ∼ ∩ ( 𝑉 × 𝑉 ) ) 𝑧 ↔ ( 𝑦 ∼ 𝑧 ∧ 𝑦 ( 𝑉 × 𝑉 ) 𝑧 ) ) |
17 |
|
brxp |
⊢ ( 𝑦 ( 𝑉 × 𝑉 ) 𝑧 ↔ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) |
18 |
3
|
expd |
⊢ ( 𝑥 ∈ 𝑉 → ( 𝑥 ∼ 𝑦 → ( 𝑦 ∼ 𝑧 → 𝑥 ∼ 𝑧 ) ) ) |
19 |
18
|
adantr |
⊢ ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑥 ∼ 𝑦 → ( 𝑦 ∼ 𝑧 → 𝑥 ∼ 𝑧 ) ) ) |
20 |
19
|
impcom |
⊢ ( ( 𝑥 ∼ 𝑦 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑦 ∼ 𝑧 → 𝑥 ∼ 𝑧 ) ) |
21 |
20
|
com12 |
⊢ ( 𝑦 ∼ 𝑧 → ( ( 𝑥 ∼ 𝑦 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → 𝑥 ∼ 𝑧 ) ) |
22 |
21
|
adantl |
⊢ ( ( ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ∧ 𝑦 ∼ 𝑧 ) → ( ( 𝑥 ∼ 𝑦 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → 𝑥 ∼ 𝑧 ) ) |
23 |
22
|
imp |
⊢ ( ( ( ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ∧ 𝑦 ∼ 𝑧 ) ∧ ( 𝑥 ∼ 𝑦 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ) → 𝑥 ∼ 𝑧 ) |
24 |
|
simplr |
⊢ ( ( ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ∧ 𝑦 ∼ 𝑧 ) → 𝑧 ∈ 𝑉 ) |
25 |
|
simprl |
⊢ ( ( 𝑥 ∼ 𝑦 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → 𝑥 ∈ 𝑉 ) |
26 |
24 25
|
anim12ci |
⊢ ( ( ( ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ∧ 𝑦 ∼ 𝑧 ) ∧ ( 𝑥 ∼ 𝑦 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ) → ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) |
27 |
23 26
|
jca |
⊢ ( ( ( ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ∧ 𝑦 ∼ 𝑧 ) ∧ ( 𝑥 ∼ 𝑦 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ) → ( 𝑥 ∼ 𝑧 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ) |
28 |
27
|
exp31 |
⊢ ( ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) → ( 𝑦 ∼ 𝑧 → ( ( 𝑥 ∼ 𝑦 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑥 ∼ 𝑧 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ) ) ) |
29 |
17 28
|
sylbi |
⊢ ( 𝑦 ( 𝑉 × 𝑉 ) 𝑧 → ( 𝑦 ∼ 𝑧 → ( ( 𝑥 ∼ 𝑦 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑥 ∼ 𝑧 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ) ) ) |
30 |
29
|
impcom |
⊢ ( ( 𝑦 ∼ 𝑧 ∧ 𝑦 ( 𝑉 × 𝑉 ) 𝑧 ) → ( ( 𝑥 ∼ 𝑦 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑥 ∼ 𝑧 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ) ) |
31 |
5
|
anbi2i |
⊢ ( ( 𝑥 ∼ 𝑦 ∧ 𝑥 ( 𝑉 × 𝑉 ) 𝑦 ) ↔ ( 𝑥 ∼ 𝑦 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ) |
32 |
|
brxp |
⊢ ( 𝑥 ( 𝑉 × 𝑉 ) 𝑧 ↔ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) |
33 |
32
|
anbi2i |
⊢ ( ( 𝑥 ∼ 𝑧 ∧ 𝑥 ( 𝑉 × 𝑉 ) 𝑧 ) ↔ ( 𝑥 ∼ 𝑧 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ) |
34 |
30 31 33
|
3imtr4g |
⊢ ( ( 𝑦 ∼ 𝑧 ∧ 𝑦 ( 𝑉 × 𝑉 ) 𝑧 ) → ( ( 𝑥 ∼ 𝑦 ∧ 𝑥 ( 𝑉 × 𝑉 ) 𝑦 ) → ( 𝑥 ∼ 𝑧 ∧ 𝑥 ( 𝑉 × 𝑉 ) 𝑧 ) ) ) |
35 |
16 34
|
sylbi |
⊢ ( 𝑦 ( ∼ ∩ ( 𝑉 × 𝑉 ) ) 𝑧 → ( ( 𝑥 ∼ 𝑦 ∧ 𝑥 ( 𝑉 × 𝑉 ) 𝑦 ) → ( 𝑥 ∼ 𝑧 ∧ 𝑥 ( 𝑉 × 𝑉 ) 𝑧 ) ) ) |
36 |
35
|
com12 |
⊢ ( ( 𝑥 ∼ 𝑦 ∧ 𝑥 ( 𝑉 × 𝑉 ) 𝑦 ) → ( 𝑦 ( ∼ ∩ ( 𝑉 × 𝑉 ) ) 𝑧 → ( 𝑥 ∼ 𝑧 ∧ 𝑥 ( 𝑉 × 𝑉 ) 𝑧 ) ) ) |
37 |
13 36
|
sylbi |
⊢ ( 𝑥 ( ∼ ∩ ( 𝑉 × 𝑉 ) ) 𝑦 → ( 𝑦 ( ∼ ∩ ( 𝑉 × 𝑉 ) ) 𝑧 → ( 𝑥 ∼ 𝑧 ∧ 𝑥 ( 𝑉 × 𝑉 ) 𝑧 ) ) ) |
38 |
37
|
imp |
⊢ ( ( 𝑥 ( ∼ ∩ ( 𝑉 × 𝑉 ) ) 𝑦 ∧ 𝑦 ( ∼ ∩ ( 𝑉 × 𝑉 ) ) 𝑧 ) → ( 𝑥 ∼ 𝑧 ∧ 𝑥 ( 𝑉 × 𝑉 ) 𝑧 ) ) |
39 |
|
brin |
⊢ ( 𝑥 ( ∼ ∩ ( 𝑉 × 𝑉 ) ) 𝑧 ↔ ( 𝑥 ∼ 𝑧 ∧ 𝑥 ( 𝑉 × 𝑉 ) 𝑧 ) ) |
40 |
38 39
|
sylibr |
⊢ ( ( 𝑥 ( ∼ ∩ ( 𝑉 × 𝑉 ) ) 𝑦 ∧ 𝑦 ( ∼ ∩ ( 𝑉 × 𝑉 ) ) 𝑧 ) → 𝑥 ( ∼ ∩ ( 𝑉 × 𝑉 ) ) 𝑧 ) |
41 |
|
id |
⊢ ( 𝑥 ∈ 𝑉 → 𝑥 ∈ 𝑉 ) |
42 |
|
brxp |
⊢ ( 𝑥 ( 𝑉 × 𝑉 ) 𝑥 ↔ ( 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉 ) ) |
43 |
41 41 42
|
sylanbrc |
⊢ ( 𝑥 ∈ 𝑉 → 𝑥 ( 𝑉 × 𝑉 ) 𝑥 ) |
44 |
1 43
|
jca |
⊢ ( 𝑥 ∈ 𝑉 → ( 𝑥 ∼ 𝑥 ∧ 𝑥 ( 𝑉 × 𝑉 ) 𝑥 ) ) |
45 |
42
|
simplbi |
⊢ ( 𝑥 ( 𝑉 × 𝑉 ) 𝑥 → 𝑥 ∈ 𝑉 ) |
46 |
45
|
adantl |
⊢ ( ( 𝑥 ∼ 𝑥 ∧ 𝑥 ( 𝑉 × 𝑉 ) 𝑥 ) → 𝑥 ∈ 𝑉 ) |
47 |
44 46
|
impbii |
⊢ ( 𝑥 ∈ 𝑉 ↔ ( 𝑥 ∼ 𝑥 ∧ 𝑥 ( 𝑉 × 𝑉 ) 𝑥 ) ) |
48 |
|
brin |
⊢ ( 𝑥 ( ∼ ∩ ( 𝑉 × 𝑉 ) ) 𝑥 ↔ ( 𝑥 ∼ 𝑥 ∧ 𝑥 ( 𝑉 × 𝑉 ) 𝑥 ) ) |
49 |
47 48
|
bitr4i |
⊢ ( 𝑥 ∈ 𝑉 ↔ 𝑥 ( ∼ ∩ ( 𝑉 × 𝑉 ) ) 𝑥 ) |
50 |
4 15 40 49
|
iseri |
⊢ ( ∼ ∩ ( 𝑉 × 𝑉 ) ) Er 𝑉 |