Metamath Proof Explorer


Theorem brlmic

Description: The relation "is isomorphic to" for modules. (Contributed by Stefan O'Rear, 25-Jan-2015)

Ref Expression
Assertion brlmic ( 𝑅𝑚 𝑆 ↔ ( 𝑅 LMIso 𝑆 ) ≠ ∅ )

Proof

Step Hyp Ref Expression
1 df-lmic 𝑚 = ( LMIso “ ( V ∖ 1o ) )
2 lmimfn LMIso Fn ( LMod × LMod )
3 1 2 brwitnlem ( 𝑅𝑚 𝑆 ↔ ( 𝑅 LMIso 𝑆 ) ≠ ∅ )