Description: The relation "is isomorphic to" for modules. (Contributed by Stefan O'Rear, 25-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | brlmic | ⊢ ( 𝑅 ≃𝑚 𝑆 ↔ ( 𝑅 LMIso 𝑆 ) ≠ ∅ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lmic | ⊢ ≃𝑚 = ( ◡ LMIso “ ( V ∖ 1o ) ) | |
2 | lmimfn | ⊢ LMIso Fn ( LMod × LMod ) | |
3 | 1 2 | brwitnlem | ⊢ ( 𝑅 ≃𝑚 𝑆 ↔ ( 𝑅 LMIso 𝑆 ) ≠ ∅ ) |