| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bropfvvvv.o | ⊢ 𝑂  =  ( 𝑎  ∈  𝑈  ↦  ( 𝑏  ∈  𝑉 ,  𝑐  ∈  𝑊  ↦  { 〈 𝑑 ,  𝑒 〉  ∣  𝜑 } ) ) | 
						
							| 2 |  | bropfvvvv.oo | ⊢ ( ( 𝐴  ∈  𝑈  ∧  𝐵  ∈  𝑆  ∧  𝐶  ∈  𝑇 )  →  ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 )  =  { 〈 𝑑 ,  𝑒 〉  ∣  𝜃 } ) | 
						
							| 3 |  | opelxp | ⊢ ( 〈 𝐵 ,  𝐶 〉  ∈  ( 𝑆  ×  𝑇 )  ↔  ( 𝐵  ∈  𝑆  ∧  𝐶  ∈  𝑇 ) ) | 
						
							| 4 |  | brne0 | ⊢ ( 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸  →  ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 )  ≠  ∅ ) | 
						
							| 5 | 2 | 3expb | ⊢ ( ( 𝐴  ∈  𝑈  ∧  ( 𝐵  ∈  𝑆  ∧  𝐶  ∈  𝑇 ) )  →  ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 )  =  { 〈 𝑑 ,  𝑒 〉  ∣  𝜃 } ) | 
						
							| 6 | 5 | breqd | ⊢ ( ( 𝐴  ∈  𝑈  ∧  ( 𝐵  ∈  𝑆  ∧  𝐶  ∈  𝑇 ) )  →  ( 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸  ↔  𝐷 { 〈 𝑑 ,  𝑒 〉  ∣  𝜃 } 𝐸 ) ) | 
						
							| 7 |  | brabv | ⊢ ( 𝐷 { 〈 𝑑 ,  𝑒 〉  ∣  𝜃 } 𝐸  →  ( 𝐷  ∈  V  ∧  𝐸  ∈  V ) ) | 
						
							| 8 | 7 | anim2i | ⊢ ( ( 𝐴  ∈  𝑈  ∧  𝐷 { 〈 𝑑 ,  𝑒 〉  ∣  𝜃 } 𝐸 )  →  ( 𝐴  ∈  𝑈  ∧  ( 𝐷  ∈  V  ∧  𝐸  ∈  V ) ) ) | 
						
							| 9 | 8 | ex | ⊢ ( 𝐴  ∈  𝑈  →  ( 𝐷 { 〈 𝑑 ,  𝑒 〉  ∣  𝜃 } 𝐸  →  ( 𝐴  ∈  𝑈  ∧  ( 𝐷  ∈  V  ∧  𝐸  ∈  V ) ) ) ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝐴  ∈  𝑈  ∧  ( 𝐵  ∈  𝑆  ∧  𝐶  ∈  𝑇 ) )  →  ( 𝐷 { 〈 𝑑 ,  𝑒 〉  ∣  𝜃 } 𝐸  →  ( 𝐴  ∈  𝑈  ∧  ( 𝐷  ∈  V  ∧  𝐸  ∈  V ) ) ) ) | 
						
							| 11 | 6 10 | sylbid | ⊢ ( ( 𝐴  ∈  𝑈  ∧  ( 𝐵  ∈  𝑆  ∧  𝐶  ∈  𝑇 ) )  →  ( 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸  →  ( 𝐴  ∈  𝑈  ∧  ( 𝐷  ∈  V  ∧  𝐸  ∈  V ) ) ) ) | 
						
							| 12 | 11 | ex | ⊢ ( 𝐴  ∈  𝑈  →  ( ( 𝐵  ∈  𝑆  ∧  𝐶  ∈  𝑇 )  →  ( 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸  →  ( 𝐴  ∈  𝑈  ∧  ( 𝐷  ∈  V  ∧  𝐸  ∈  V ) ) ) ) ) | 
						
							| 13 | 12 | com23 | ⊢ ( 𝐴  ∈  𝑈  →  ( 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸  →  ( ( 𝐵  ∈  𝑆  ∧  𝐶  ∈  𝑇 )  →  ( 𝐴  ∈  𝑈  ∧  ( 𝐷  ∈  V  ∧  𝐸  ∈  V ) ) ) ) ) | 
						
							| 14 | 13 | a1d | ⊢ ( 𝐴  ∈  𝑈  →  ( ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 )  ≠  ∅  →  ( 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸  →  ( ( 𝐵  ∈  𝑆  ∧  𝐶  ∈  𝑇 )  →  ( 𝐴  ∈  𝑈  ∧  ( 𝐷  ∈  V  ∧  𝐸  ∈  V ) ) ) ) ) ) | 
						
							| 15 | 1 | fvmptndm | ⊢ ( ¬  𝐴  ∈  𝑈  →  ( 𝑂 ‘ 𝐴 )  =  ∅ ) | 
						
							| 16 |  | df-ov | ⊢ ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 )  =  ( ( 𝑂 ‘ 𝐴 ) ‘ 〈 𝐵 ,  𝐶 〉 ) | 
						
							| 17 |  | fveq1 | ⊢ ( ( 𝑂 ‘ 𝐴 )  =  ∅  →  ( ( 𝑂 ‘ 𝐴 ) ‘ 〈 𝐵 ,  𝐶 〉 )  =  ( ∅ ‘ 〈 𝐵 ,  𝐶 〉 ) ) | 
						
							| 18 | 16 17 | eqtrid | ⊢ ( ( 𝑂 ‘ 𝐴 )  =  ∅  →  ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 )  =  ( ∅ ‘ 〈 𝐵 ,  𝐶 〉 ) ) | 
						
							| 19 |  | 0fv | ⊢ ( ∅ ‘ 〈 𝐵 ,  𝐶 〉 )  =  ∅ | 
						
							| 20 | 18 19 | eqtrdi | ⊢ ( ( 𝑂 ‘ 𝐴 )  =  ∅  →  ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 )  =  ∅ ) | 
						
							| 21 |  | eqneqall | ⊢ ( ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 )  =  ∅  →  ( ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 )  ≠  ∅  →  ( 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸  →  ( ( 𝐵  ∈  𝑆  ∧  𝐶  ∈  𝑇 )  →  ( 𝐴  ∈  𝑈  ∧  ( 𝐷  ∈  V  ∧  𝐸  ∈  V ) ) ) ) ) ) | 
						
							| 22 | 15 20 21 | 3syl | ⊢ ( ¬  𝐴  ∈  𝑈  →  ( ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 )  ≠  ∅  →  ( 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸  →  ( ( 𝐵  ∈  𝑆  ∧  𝐶  ∈  𝑇 )  →  ( 𝐴  ∈  𝑈  ∧  ( 𝐷  ∈  V  ∧  𝐸  ∈  V ) ) ) ) ) ) | 
						
							| 23 | 14 22 | pm2.61i | ⊢ ( ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 )  ≠  ∅  →  ( 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸  →  ( ( 𝐵  ∈  𝑆  ∧  𝐶  ∈  𝑇 )  →  ( 𝐴  ∈  𝑈  ∧  ( 𝐷  ∈  V  ∧  𝐸  ∈  V ) ) ) ) ) | 
						
							| 24 | 4 23 | mpcom | ⊢ ( 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸  →  ( ( 𝐵  ∈  𝑆  ∧  𝐶  ∈  𝑇 )  →  ( 𝐴  ∈  𝑈  ∧  ( 𝐷  ∈  V  ∧  𝐸  ∈  V ) ) ) ) | 
						
							| 25 | 24 | com12 | ⊢ ( ( 𝐵  ∈  𝑆  ∧  𝐶  ∈  𝑇 )  →  ( 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸  →  ( 𝐴  ∈  𝑈  ∧  ( 𝐷  ∈  V  ∧  𝐸  ∈  V ) ) ) ) | 
						
							| 26 | 25 | anc2ri | ⊢ ( ( 𝐵  ∈  𝑆  ∧  𝐶  ∈  𝑇 )  →  ( 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸  →  ( ( 𝐴  ∈  𝑈  ∧  ( 𝐷  ∈  V  ∧  𝐸  ∈  V ) )  ∧  ( 𝐵  ∈  𝑆  ∧  𝐶  ∈  𝑇 ) ) ) ) | 
						
							| 27 |  | 3anan32 | ⊢ ( ( 𝐴  ∈  𝑈  ∧  ( 𝐵  ∈  𝑆  ∧  𝐶  ∈  𝑇 )  ∧  ( 𝐷  ∈  V  ∧  𝐸  ∈  V ) )  ↔  ( ( 𝐴  ∈  𝑈  ∧  ( 𝐷  ∈  V  ∧  𝐸  ∈  V ) )  ∧  ( 𝐵  ∈  𝑆  ∧  𝐶  ∈  𝑇 ) ) ) | 
						
							| 28 | 26 27 | imbitrrdi | ⊢ ( ( 𝐵  ∈  𝑆  ∧  𝐶  ∈  𝑇 )  →  ( 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸  →  ( 𝐴  ∈  𝑈  ∧  ( 𝐵  ∈  𝑆  ∧  𝐶  ∈  𝑇 )  ∧  ( 𝐷  ∈  V  ∧  𝐸  ∈  V ) ) ) ) | 
						
							| 29 | 3 28 | sylbi | ⊢ ( 〈 𝐵 ,  𝐶 〉  ∈  ( 𝑆  ×  𝑇 )  →  ( 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸  →  ( 𝐴  ∈  𝑈  ∧  ( 𝐵  ∈  𝑆  ∧  𝐶  ∈  𝑇 )  ∧  ( 𝐷  ∈  V  ∧  𝐸  ∈  V ) ) ) ) | 
						
							| 30 | 29 | imp | ⊢ ( ( 〈 𝐵 ,  𝐶 〉  ∈  ( 𝑆  ×  𝑇 )  ∧  𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸 )  →  ( 𝐴  ∈  𝑈  ∧  ( 𝐵  ∈  𝑆  ∧  𝐶  ∈  𝑇 )  ∧  ( 𝐷  ∈  V  ∧  𝐸  ∈  V ) ) ) |