Metamath Proof Explorer


Theorem bropopvvv

Description: If a binary relation holds for the result of an operation which is a result of an operation, the involved classes are sets. (Contributed by Alexander van der Vekens, 12-Dec-2017) (Proof shortened by AV, 3-Jan-2021)

Ref Expression
Hypotheses bropopvvv.o 𝑂 = ( 𝑣 ∈ V , 𝑒 ∈ V ↦ ( 𝑎𝑣 , 𝑏𝑣 ↦ { ⟨ 𝑓 , 𝑝 ⟩ ∣ 𝜑 } ) )
bropopvvv.p ( ( 𝑣 = 𝑉𝑒 = 𝐸 ) → ( 𝜑𝜓 ) )
bropopvvv.oo ( ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐴𝑉𝐵𝑉 ) ) → ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) = { ⟨ 𝑓 , 𝑝 ⟩ ∣ 𝜃 } )
Assertion bropopvvv ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐴𝑉𝐵𝑉 ) ) )

Proof

Step Hyp Ref Expression
1 bropopvvv.o 𝑂 = ( 𝑣 ∈ V , 𝑒 ∈ V ↦ ( 𝑎𝑣 , 𝑏𝑣 ↦ { ⟨ 𝑓 , 𝑝 ⟩ ∣ 𝜑 } ) )
2 bropopvvv.p ( ( 𝑣 = 𝑉𝑒 = 𝐸 ) → ( 𝜑𝜓 ) )
3 bropopvvv.oo ( ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐴𝑉𝐵𝑉 ) ) → ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) = { ⟨ 𝑓 , 𝑝 ⟩ ∣ 𝜃 } )
4 brovpreldm ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ⟨ 𝐴 , 𝐵 ⟩ ∈ dom ( 𝑉 𝑂 𝐸 ) )
5 simpl ( ( 𝑣 = 𝑉𝑒 = 𝐸 ) → 𝑣 = 𝑉 )
6 2 opabbidv ( ( 𝑣 = 𝑉𝑒 = 𝐸 ) → { ⟨ 𝑓 , 𝑝 ⟩ ∣ 𝜑 } = { ⟨ 𝑓 , 𝑝 ⟩ ∣ 𝜓 } )
7 5 5 6 mpoeq123dv ( ( 𝑣 = 𝑉𝑒 = 𝐸 ) → ( 𝑎𝑣 , 𝑏𝑣 ↦ { ⟨ 𝑓 , 𝑝 ⟩ ∣ 𝜑 } ) = ( 𝑎𝑉 , 𝑏𝑉 ↦ { ⟨ 𝑓 , 𝑝 ⟩ ∣ 𝜓 } ) )
8 7 1 ovmpoga ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ∧ ( 𝑎𝑉 , 𝑏𝑉 ↦ { ⟨ 𝑓 , 𝑝 ⟩ ∣ 𝜓 } ) ∈ V ) → ( 𝑉 𝑂 𝐸 ) = ( 𝑎𝑉 , 𝑏𝑉 ↦ { ⟨ 𝑓 , 𝑝 ⟩ ∣ 𝜓 } ) )
9 8 dmeqd ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ∧ ( 𝑎𝑉 , 𝑏𝑉 ↦ { ⟨ 𝑓 , 𝑝 ⟩ ∣ 𝜓 } ) ∈ V ) → dom ( 𝑉 𝑂 𝐸 ) = dom ( 𝑎𝑉 , 𝑏𝑉 ↦ { ⟨ 𝑓 , 𝑝 ⟩ ∣ 𝜓 } ) )
10 9 eleq2d ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ∧ ( 𝑎𝑉 , 𝑏𝑉 ↦ { ⟨ 𝑓 , 𝑝 ⟩ ∣ 𝜓 } ) ∈ V ) → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ dom ( 𝑉 𝑂 𝐸 ) ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ dom ( 𝑎𝑉 , 𝑏𝑉 ↦ { ⟨ 𝑓 , 𝑝 ⟩ ∣ 𝜓 } ) ) )
11 dmoprabss dom { ⟨ ⟨ 𝑎 , 𝑏 ⟩ , 𝑐 ⟩ ∣ ( ( 𝑎𝑉𝑏𝑉 ) ∧ 𝑐 = { ⟨ 𝑓 , 𝑝 ⟩ ∣ 𝜓 } ) } ⊆ ( 𝑉 × 𝑉 )
12 11 sseli ( ⟨ 𝐴 , 𝐵 ⟩ ∈ dom { ⟨ ⟨ 𝑎 , 𝑏 ⟩ , 𝑐 ⟩ ∣ ( ( 𝑎𝑉𝑏𝑉 ) ∧ 𝑐 = { ⟨ 𝑓 , 𝑝 ⟩ ∣ 𝜓 } ) } → ⟨ 𝐴 , 𝐵 ⟩ ∈ ( 𝑉 × 𝑉 ) )
13 opelxp ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( 𝑉 × 𝑉 ) ↔ ( 𝐴𝑉𝐵𝑉 ) )
14 df-br ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 ↔ ⟨ 𝐹 , 𝑃 ⟩ ∈ ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) )
15 ne0i ( ⟨ 𝐹 , 𝑃 ⟩ ∈ ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) → ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) ≠ ∅ )
16 3 breqd ( ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐴𝑉𝐵𝑉 ) ) → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃𝐹 { ⟨ 𝑓 , 𝑝 ⟩ ∣ 𝜃 } 𝑃 ) )
17 brabv ( 𝐹 { ⟨ 𝑓 , 𝑝 ⟩ ∣ 𝜃 } 𝑃 → ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) )
18 17 anim2i ( ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ 𝐹 { ⟨ 𝑓 , 𝑝 ⟩ ∣ 𝜃 } 𝑃 ) → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) )
19 18 ex ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → ( 𝐹 { ⟨ 𝑓 , 𝑝 ⟩ ∣ 𝜃 } 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) )
20 19 adantr ( ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐴𝑉𝐵𝑉 ) ) → ( 𝐹 { ⟨ 𝑓 , 𝑝 ⟩ ∣ 𝜃 } 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) )
21 16 20 sylbid ( ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐴𝑉𝐵𝑉 ) ) → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) )
22 21 ex ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → ( ( 𝐴𝑉𝐵𝑉 ) → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) ) )
23 22 com23 ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝐴𝑉𝐵𝑉 ) → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) ) )
24 23 a1d ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → ( ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) ≠ ∅ → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝐴𝑉𝐵𝑉 ) → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) ) ) )
25 1 mpondm0 ( ¬ ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → ( 𝑉 𝑂 𝐸 ) = ∅ )
26 df-ov ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) = ( ( 𝑉 𝑂 𝐸 ) ‘ ⟨ 𝐴 , 𝐵 ⟩ )
27 fveq1 ( ( 𝑉 𝑂 𝐸 ) = ∅ → ( ( 𝑉 𝑂 𝐸 ) ‘ ⟨ 𝐴 , 𝐵 ⟩ ) = ( ∅ ‘ ⟨ 𝐴 , 𝐵 ⟩ ) )
28 26 27 syl5eq ( ( 𝑉 𝑂 𝐸 ) = ∅ → ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) = ( ∅ ‘ ⟨ 𝐴 , 𝐵 ⟩ ) )
29 0fv ( ∅ ‘ ⟨ 𝐴 , 𝐵 ⟩ ) = ∅
30 28 29 eqtrdi ( ( 𝑉 𝑂 𝐸 ) = ∅ → ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) = ∅ )
31 eqneqall ( ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) = ∅ → ( ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) ≠ ∅ → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝐴𝑉𝐵𝑉 ) → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) ) ) )
32 25 30 31 3syl ( ¬ ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → ( ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) ≠ ∅ → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝐴𝑉𝐵𝑉 ) → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) ) ) )
33 24 32 pm2.61i ( ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) ≠ ∅ → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝐴𝑉𝐵𝑉 ) → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) ) )
34 15 33 syl ( ⟨ 𝐹 , 𝑃 ⟩ ∈ ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝐴𝑉𝐵𝑉 ) → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) ) )
35 14 34 sylbi ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝐴𝑉𝐵𝑉 ) → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) ) )
36 35 pm2.43i ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝐴𝑉𝐵𝑉 ) → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) )
37 36 com12 ( ( 𝐴𝑉𝐵𝑉 ) → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) )
38 37 anc2ri ( ( 𝐴𝑉𝐵𝑉 ) → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ∧ ( 𝐴𝑉𝐵𝑉 ) ) ) )
39 df-3an ( ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐴𝑉𝐵𝑉 ) ) ↔ ( ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ∧ ( 𝐴𝑉𝐵𝑉 ) ) )
40 38 39 syl6ibr ( ( 𝐴𝑉𝐵𝑉 ) → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐴𝑉𝐵𝑉 ) ) ) )
41 13 40 sylbi ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( 𝑉 × 𝑉 ) → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐴𝑉𝐵𝑉 ) ) ) )
42 12 41 syl ( ⟨ 𝐴 , 𝐵 ⟩ ∈ dom { ⟨ ⟨ 𝑎 , 𝑏 ⟩ , 𝑐 ⟩ ∣ ( ( 𝑎𝑉𝑏𝑉 ) ∧ 𝑐 = { ⟨ 𝑓 , 𝑝 ⟩ ∣ 𝜓 } ) } → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐴𝑉𝐵𝑉 ) ) ) )
43 df-mpo ( 𝑎𝑉 , 𝑏𝑉 ↦ { ⟨ 𝑓 , 𝑝 ⟩ ∣ 𝜓 } ) = { ⟨ ⟨ 𝑎 , 𝑏 ⟩ , 𝑐 ⟩ ∣ ( ( 𝑎𝑉𝑏𝑉 ) ∧ 𝑐 = { ⟨ 𝑓 , 𝑝 ⟩ ∣ 𝜓 } ) }
44 43 dmeqi dom ( 𝑎𝑉 , 𝑏𝑉 ↦ { ⟨ 𝑓 , 𝑝 ⟩ ∣ 𝜓 } ) = dom { ⟨ ⟨ 𝑎 , 𝑏 ⟩ , 𝑐 ⟩ ∣ ( ( 𝑎𝑉𝑏𝑉 ) ∧ 𝑐 = { ⟨ 𝑓 , 𝑝 ⟩ ∣ 𝜓 } ) }
45 42 44 eleq2s ( ⟨ 𝐴 , 𝐵 ⟩ ∈ dom ( 𝑎𝑉 , 𝑏𝑉 ↦ { ⟨ 𝑓 , 𝑝 ⟩ ∣ 𝜓 } ) → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐴𝑉𝐵𝑉 ) ) ) )
46 10 45 syl6bi ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ∧ ( 𝑎𝑉 , 𝑏𝑉 ↦ { ⟨ 𝑓 , 𝑝 ⟩ ∣ 𝜓 } ) ∈ V ) → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ dom ( 𝑉 𝑂 𝐸 ) → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐴𝑉𝐵𝑉 ) ) ) ) )
47 3ianor ( ¬ ( 𝑉 ∈ V ∧ 𝐸 ∈ V ∧ ( 𝑎𝑉 , 𝑏𝑉 ↦ { ⟨ 𝑓 , 𝑝 ⟩ ∣ 𝜓 } ) ∈ V ) ↔ ( ¬ 𝑉 ∈ V ∨ ¬ 𝐸 ∈ V ∨ ¬ ( 𝑎𝑉 , 𝑏𝑉 ↦ { ⟨ 𝑓 , 𝑝 ⟩ ∣ 𝜓 } ) ∈ V ) )
48 df-3or ( ( ¬ 𝑉 ∈ V ∨ ¬ 𝐸 ∈ V ∨ ¬ ( 𝑎𝑉 , 𝑏𝑉 ↦ { ⟨ 𝑓 , 𝑝 ⟩ ∣ 𝜓 } ) ∈ V ) ↔ ( ( ¬ 𝑉 ∈ V ∨ ¬ 𝐸 ∈ V ) ∨ ¬ ( 𝑎𝑉 , 𝑏𝑉 ↦ { ⟨ 𝑓 , 𝑝 ⟩ ∣ 𝜓 } ) ∈ V ) )
49 ianor ( ¬ ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ↔ ( ¬ 𝑉 ∈ V ∨ ¬ 𝐸 ∈ V ) )
50 25 dmeqd ( ¬ ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → dom ( 𝑉 𝑂 𝐸 ) = dom ∅ )
51 50 eleq2d ( ¬ ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ dom ( 𝑉 𝑂 𝐸 ) ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ dom ∅ ) )
52 dm0 dom ∅ = ∅
53 52 eleq2i ( ⟨ 𝐴 , 𝐵 ⟩ ∈ dom ∅ ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ ∅ )
54 51 53 bitrdi ( ¬ ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ dom ( 𝑉 𝑂 𝐸 ) ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ ∅ ) )
55 noel ¬ ⟨ 𝐴 , 𝐵 ⟩ ∈ ∅
56 55 pm2.21i ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ∅ → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐴𝑉𝐵𝑉 ) ) ) )
57 54 56 syl6bi ( ¬ ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ dom ( 𝑉 𝑂 𝐸 ) → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐴𝑉𝐵𝑉 ) ) ) ) )
58 49 57 sylbir ( ( ¬ 𝑉 ∈ V ∨ ¬ 𝐸 ∈ V ) → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ dom ( 𝑉 𝑂 𝐸 ) → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐴𝑉𝐵𝑉 ) ) ) ) )
59 anor ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ↔ ¬ ( ¬ 𝑉 ∈ V ∨ ¬ 𝐸 ∈ V ) )
60 id ( 𝑉 ∈ V → 𝑉 ∈ V )
61 60 ancri ( 𝑉 ∈ V → ( 𝑉 ∈ V ∧ 𝑉 ∈ V ) )
62 61 adantr ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → ( 𝑉 ∈ V ∧ 𝑉 ∈ V ) )
63 mpoexga ( ( 𝑉 ∈ V ∧ 𝑉 ∈ V ) → ( 𝑎𝑉 , 𝑏𝑉 ↦ { ⟨ 𝑓 , 𝑝 ⟩ ∣ 𝜓 } ) ∈ V )
64 62 63 syl ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → ( 𝑎𝑉 , 𝑏𝑉 ↦ { ⟨ 𝑓 , 𝑝 ⟩ ∣ 𝜓 } ) ∈ V )
65 64 pm2.24d ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → ( ¬ ( 𝑎𝑉 , 𝑏𝑉 ↦ { ⟨ 𝑓 , 𝑝 ⟩ ∣ 𝜓 } ) ∈ V → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ dom ( 𝑉 𝑂 𝐸 ) → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐴𝑉𝐵𝑉 ) ) ) ) ) )
66 59 65 sylbir ( ¬ ( ¬ 𝑉 ∈ V ∨ ¬ 𝐸 ∈ V ) → ( ¬ ( 𝑎𝑉 , 𝑏𝑉 ↦ { ⟨ 𝑓 , 𝑝 ⟩ ∣ 𝜓 } ) ∈ V → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ dom ( 𝑉 𝑂 𝐸 ) → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐴𝑉𝐵𝑉 ) ) ) ) ) )
67 66 imp ( ( ¬ ( ¬ 𝑉 ∈ V ∨ ¬ 𝐸 ∈ V ) ∧ ¬ ( 𝑎𝑉 , 𝑏𝑉 ↦ { ⟨ 𝑓 , 𝑝 ⟩ ∣ 𝜓 } ) ∈ V ) → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ dom ( 𝑉 𝑂 𝐸 ) → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐴𝑉𝐵𝑉 ) ) ) ) )
68 58 67 jaoi3 ( ( ( ¬ 𝑉 ∈ V ∨ ¬ 𝐸 ∈ V ) ∨ ¬ ( 𝑎𝑉 , 𝑏𝑉 ↦ { ⟨ 𝑓 , 𝑝 ⟩ ∣ 𝜓 } ) ∈ V ) → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ dom ( 𝑉 𝑂 𝐸 ) → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐴𝑉𝐵𝑉 ) ) ) ) )
69 48 68 sylbi ( ( ¬ 𝑉 ∈ V ∨ ¬ 𝐸 ∈ V ∨ ¬ ( 𝑎𝑉 , 𝑏𝑉 ↦ { ⟨ 𝑓 , 𝑝 ⟩ ∣ 𝜓 } ) ∈ V ) → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ dom ( 𝑉 𝑂 𝐸 ) → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐴𝑉𝐵𝑉 ) ) ) ) )
70 47 69 sylbi ( ¬ ( 𝑉 ∈ V ∧ 𝐸 ∈ V ∧ ( 𝑎𝑉 , 𝑏𝑉 ↦ { ⟨ 𝑓 , 𝑝 ⟩ ∣ 𝜓 } ) ∈ V ) → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ dom ( 𝑉 𝑂 𝐸 ) → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐴𝑉𝐵𝑉 ) ) ) ) )
71 46 70 pm2.61i ( ⟨ 𝐴 , 𝐵 ⟩ ∈ dom ( 𝑉 𝑂 𝐸 ) → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐴𝑉𝐵𝑉 ) ) ) )
72 4 71 syl ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐴𝑉𝐵𝑉 ) ) ) )
73 72 pm2.43i ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐴𝑉𝐵𝑉 ) ) )