Step |
Hyp |
Ref |
Expression |
1 |
|
bropopvvv.o |
⊢ 𝑂 = ( 𝑣 ∈ V , 𝑒 ∈ V ↦ ( 𝑎 ∈ 𝑣 , 𝑏 ∈ 𝑣 ↦ { 〈 𝑓 , 𝑝 〉 ∣ 𝜑 } ) ) |
2 |
|
bropopvvv.p |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → ( 𝜑 ↔ 𝜓 ) ) |
3 |
|
bropopvvv.oo |
⊢ ( ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) = { 〈 𝑓 , 𝑝 〉 ∣ 𝜃 } ) |
4 |
|
brovpreldm |
⊢ ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → 〈 𝐴 , 𝐵 〉 ∈ dom ( 𝑉 𝑂 𝐸 ) ) |
5 |
|
simpl |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → 𝑣 = 𝑉 ) |
6 |
2
|
opabbidv |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → { 〈 𝑓 , 𝑝 〉 ∣ 𝜑 } = { 〈 𝑓 , 𝑝 〉 ∣ 𝜓 } ) |
7 |
5 5 6
|
mpoeq123dv |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → ( 𝑎 ∈ 𝑣 , 𝑏 ∈ 𝑣 ↦ { 〈 𝑓 , 𝑝 〉 ∣ 𝜑 } ) = ( 𝑎 ∈ 𝑉 , 𝑏 ∈ 𝑉 ↦ { 〈 𝑓 , 𝑝 〉 ∣ 𝜓 } ) ) |
8 |
7 1
|
ovmpoga |
⊢ ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ∧ ( 𝑎 ∈ 𝑉 , 𝑏 ∈ 𝑉 ↦ { 〈 𝑓 , 𝑝 〉 ∣ 𝜓 } ) ∈ V ) → ( 𝑉 𝑂 𝐸 ) = ( 𝑎 ∈ 𝑉 , 𝑏 ∈ 𝑉 ↦ { 〈 𝑓 , 𝑝 〉 ∣ 𝜓 } ) ) |
9 |
8
|
dmeqd |
⊢ ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ∧ ( 𝑎 ∈ 𝑉 , 𝑏 ∈ 𝑉 ↦ { 〈 𝑓 , 𝑝 〉 ∣ 𝜓 } ) ∈ V ) → dom ( 𝑉 𝑂 𝐸 ) = dom ( 𝑎 ∈ 𝑉 , 𝑏 ∈ 𝑉 ↦ { 〈 𝑓 , 𝑝 〉 ∣ 𝜓 } ) ) |
10 |
9
|
eleq2d |
⊢ ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ∧ ( 𝑎 ∈ 𝑉 , 𝑏 ∈ 𝑉 ↦ { 〈 𝑓 , 𝑝 〉 ∣ 𝜓 } ) ∈ V ) → ( 〈 𝐴 , 𝐵 〉 ∈ dom ( 𝑉 𝑂 𝐸 ) ↔ 〈 𝐴 , 𝐵 〉 ∈ dom ( 𝑎 ∈ 𝑉 , 𝑏 ∈ 𝑉 ↦ { 〈 𝑓 , 𝑝 〉 ∣ 𝜓 } ) ) ) |
11 |
|
dmoprabss |
⊢ dom { 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 ∣ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑐 = { 〈 𝑓 , 𝑝 〉 ∣ 𝜓 } ) } ⊆ ( 𝑉 × 𝑉 ) |
12 |
11
|
sseli |
⊢ ( 〈 𝐴 , 𝐵 〉 ∈ dom { 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 ∣ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑐 = { 〈 𝑓 , 𝑝 〉 ∣ 𝜓 } ) } → 〈 𝐴 , 𝐵 〉 ∈ ( 𝑉 × 𝑉 ) ) |
13 |
|
opelxp |
⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝑉 × 𝑉 ) ↔ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) |
14 |
|
df-br |
⊢ ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 ↔ 〈 𝐹 , 𝑃 〉 ∈ ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) ) |
15 |
|
ne0i |
⊢ ( 〈 𝐹 , 𝑃 〉 ∈ ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) → ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) ≠ ∅ ) |
16 |
3
|
breqd |
⊢ ( ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 ↔ 𝐹 { 〈 𝑓 , 𝑝 〉 ∣ 𝜃 } 𝑃 ) ) |
17 |
|
brabv |
⊢ ( 𝐹 { 〈 𝑓 , 𝑝 〉 ∣ 𝜃 } 𝑃 → ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) |
18 |
17
|
anim2i |
⊢ ( ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ 𝐹 { 〈 𝑓 , 𝑝 〉 ∣ 𝜃 } 𝑃 ) → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) |
19 |
18
|
ex |
⊢ ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → ( 𝐹 { 〈 𝑓 , 𝑝 〉 ∣ 𝜃 } 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) ) |
20 |
19
|
adantr |
⊢ ( ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ( 𝐹 { 〈 𝑓 , 𝑝 〉 ∣ 𝜃 } 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) ) |
21 |
16 20
|
sylbid |
⊢ ( ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) ) |
22 |
21
|
ex |
⊢ ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) ) ) |
23 |
22
|
com23 |
⊢ ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) ) ) |
24 |
23
|
a1d |
⊢ ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → ( ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) ≠ ∅ → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) ) ) ) |
25 |
1
|
mpondm0 |
⊢ ( ¬ ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → ( 𝑉 𝑂 𝐸 ) = ∅ ) |
26 |
|
df-ov |
⊢ ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) = ( ( 𝑉 𝑂 𝐸 ) ‘ 〈 𝐴 , 𝐵 〉 ) |
27 |
|
fveq1 |
⊢ ( ( 𝑉 𝑂 𝐸 ) = ∅ → ( ( 𝑉 𝑂 𝐸 ) ‘ 〈 𝐴 , 𝐵 〉 ) = ( ∅ ‘ 〈 𝐴 , 𝐵 〉 ) ) |
28 |
26 27
|
eqtrid |
⊢ ( ( 𝑉 𝑂 𝐸 ) = ∅ → ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) = ( ∅ ‘ 〈 𝐴 , 𝐵 〉 ) ) |
29 |
|
0fv |
⊢ ( ∅ ‘ 〈 𝐴 , 𝐵 〉 ) = ∅ |
30 |
28 29
|
eqtrdi |
⊢ ( ( 𝑉 𝑂 𝐸 ) = ∅ → ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) = ∅ ) |
31 |
|
eqneqall |
⊢ ( ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) = ∅ → ( ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) ≠ ∅ → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) ) ) ) |
32 |
25 30 31
|
3syl |
⊢ ( ¬ ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → ( ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) ≠ ∅ → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) ) ) ) |
33 |
24 32
|
pm2.61i |
⊢ ( ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) ≠ ∅ → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) ) ) |
34 |
15 33
|
syl |
⊢ ( 〈 𝐹 , 𝑃 〉 ∈ ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) ) ) |
35 |
14 34
|
sylbi |
⊢ ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) ) ) |
36 |
35
|
pm2.43i |
⊢ ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) ) |
37 |
36
|
com12 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) ) |
38 |
37
|
anc2ri |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) ) |
39 |
|
df-3an |
⊢ ( ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ↔ ( ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) |
40 |
38 39
|
syl6ibr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) ) |
41 |
13 40
|
sylbi |
⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝑉 × 𝑉 ) → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) ) |
42 |
12 41
|
syl |
⊢ ( 〈 𝐴 , 𝐵 〉 ∈ dom { 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 ∣ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑐 = { 〈 𝑓 , 𝑝 〉 ∣ 𝜓 } ) } → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) ) |
43 |
|
df-mpo |
⊢ ( 𝑎 ∈ 𝑉 , 𝑏 ∈ 𝑉 ↦ { 〈 𝑓 , 𝑝 〉 ∣ 𝜓 } ) = { 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 ∣ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑐 = { 〈 𝑓 , 𝑝 〉 ∣ 𝜓 } ) } |
44 |
43
|
dmeqi |
⊢ dom ( 𝑎 ∈ 𝑉 , 𝑏 ∈ 𝑉 ↦ { 〈 𝑓 , 𝑝 〉 ∣ 𝜓 } ) = dom { 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 ∣ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑐 = { 〈 𝑓 , 𝑝 〉 ∣ 𝜓 } ) } |
45 |
42 44
|
eleq2s |
⊢ ( 〈 𝐴 , 𝐵 〉 ∈ dom ( 𝑎 ∈ 𝑉 , 𝑏 ∈ 𝑉 ↦ { 〈 𝑓 , 𝑝 〉 ∣ 𝜓 } ) → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) ) |
46 |
10 45
|
syl6bi |
⊢ ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ∧ ( 𝑎 ∈ 𝑉 , 𝑏 ∈ 𝑉 ↦ { 〈 𝑓 , 𝑝 〉 ∣ 𝜓 } ) ∈ V ) → ( 〈 𝐴 , 𝐵 〉 ∈ dom ( 𝑉 𝑂 𝐸 ) → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) ) ) |
47 |
|
3ianor |
⊢ ( ¬ ( 𝑉 ∈ V ∧ 𝐸 ∈ V ∧ ( 𝑎 ∈ 𝑉 , 𝑏 ∈ 𝑉 ↦ { 〈 𝑓 , 𝑝 〉 ∣ 𝜓 } ) ∈ V ) ↔ ( ¬ 𝑉 ∈ V ∨ ¬ 𝐸 ∈ V ∨ ¬ ( 𝑎 ∈ 𝑉 , 𝑏 ∈ 𝑉 ↦ { 〈 𝑓 , 𝑝 〉 ∣ 𝜓 } ) ∈ V ) ) |
48 |
|
df-3or |
⊢ ( ( ¬ 𝑉 ∈ V ∨ ¬ 𝐸 ∈ V ∨ ¬ ( 𝑎 ∈ 𝑉 , 𝑏 ∈ 𝑉 ↦ { 〈 𝑓 , 𝑝 〉 ∣ 𝜓 } ) ∈ V ) ↔ ( ( ¬ 𝑉 ∈ V ∨ ¬ 𝐸 ∈ V ) ∨ ¬ ( 𝑎 ∈ 𝑉 , 𝑏 ∈ 𝑉 ↦ { 〈 𝑓 , 𝑝 〉 ∣ 𝜓 } ) ∈ V ) ) |
49 |
|
ianor |
⊢ ( ¬ ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ↔ ( ¬ 𝑉 ∈ V ∨ ¬ 𝐸 ∈ V ) ) |
50 |
25
|
dmeqd |
⊢ ( ¬ ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → dom ( 𝑉 𝑂 𝐸 ) = dom ∅ ) |
51 |
50
|
eleq2d |
⊢ ( ¬ ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → ( 〈 𝐴 , 𝐵 〉 ∈ dom ( 𝑉 𝑂 𝐸 ) ↔ 〈 𝐴 , 𝐵 〉 ∈ dom ∅ ) ) |
52 |
|
dm0 |
⊢ dom ∅ = ∅ |
53 |
52
|
eleq2i |
⊢ ( 〈 𝐴 , 𝐵 〉 ∈ dom ∅ ↔ 〈 𝐴 , 𝐵 〉 ∈ ∅ ) |
54 |
51 53
|
bitrdi |
⊢ ( ¬ ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → ( 〈 𝐴 , 𝐵 〉 ∈ dom ( 𝑉 𝑂 𝐸 ) ↔ 〈 𝐴 , 𝐵 〉 ∈ ∅ ) ) |
55 |
|
noel |
⊢ ¬ 〈 𝐴 , 𝐵 〉 ∈ ∅ |
56 |
55
|
pm2.21i |
⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ∅ → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) ) |
57 |
54 56
|
syl6bi |
⊢ ( ¬ ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → ( 〈 𝐴 , 𝐵 〉 ∈ dom ( 𝑉 𝑂 𝐸 ) → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) ) ) |
58 |
49 57
|
sylbir |
⊢ ( ( ¬ 𝑉 ∈ V ∨ ¬ 𝐸 ∈ V ) → ( 〈 𝐴 , 𝐵 〉 ∈ dom ( 𝑉 𝑂 𝐸 ) → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) ) ) |
59 |
|
anor |
⊢ ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ↔ ¬ ( ¬ 𝑉 ∈ V ∨ ¬ 𝐸 ∈ V ) ) |
60 |
|
id |
⊢ ( 𝑉 ∈ V → 𝑉 ∈ V ) |
61 |
60
|
ancri |
⊢ ( 𝑉 ∈ V → ( 𝑉 ∈ V ∧ 𝑉 ∈ V ) ) |
62 |
61
|
adantr |
⊢ ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → ( 𝑉 ∈ V ∧ 𝑉 ∈ V ) ) |
63 |
|
mpoexga |
⊢ ( ( 𝑉 ∈ V ∧ 𝑉 ∈ V ) → ( 𝑎 ∈ 𝑉 , 𝑏 ∈ 𝑉 ↦ { 〈 𝑓 , 𝑝 〉 ∣ 𝜓 } ) ∈ V ) |
64 |
62 63
|
syl |
⊢ ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → ( 𝑎 ∈ 𝑉 , 𝑏 ∈ 𝑉 ↦ { 〈 𝑓 , 𝑝 〉 ∣ 𝜓 } ) ∈ V ) |
65 |
64
|
pm2.24d |
⊢ ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → ( ¬ ( 𝑎 ∈ 𝑉 , 𝑏 ∈ 𝑉 ↦ { 〈 𝑓 , 𝑝 〉 ∣ 𝜓 } ) ∈ V → ( 〈 𝐴 , 𝐵 〉 ∈ dom ( 𝑉 𝑂 𝐸 ) → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) ) ) ) |
66 |
59 65
|
sylbir |
⊢ ( ¬ ( ¬ 𝑉 ∈ V ∨ ¬ 𝐸 ∈ V ) → ( ¬ ( 𝑎 ∈ 𝑉 , 𝑏 ∈ 𝑉 ↦ { 〈 𝑓 , 𝑝 〉 ∣ 𝜓 } ) ∈ V → ( 〈 𝐴 , 𝐵 〉 ∈ dom ( 𝑉 𝑂 𝐸 ) → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) ) ) ) |
67 |
66
|
imp |
⊢ ( ( ¬ ( ¬ 𝑉 ∈ V ∨ ¬ 𝐸 ∈ V ) ∧ ¬ ( 𝑎 ∈ 𝑉 , 𝑏 ∈ 𝑉 ↦ { 〈 𝑓 , 𝑝 〉 ∣ 𝜓 } ) ∈ V ) → ( 〈 𝐴 , 𝐵 〉 ∈ dom ( 𝑉 𝑂 𝐸 ) → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) ) ) |
68 |
58 67
|
jaoi3 |
⊢ ( ( ( ¬ 𝑉 ∈ V ∨ ¬ 𝐸 ∈ V ) ∨ ¬ ( 𝑎 ∈ 𝑉 , 𝑏 ∈ 𝑉 ↦ { 〈 𝑓 , 𝑝 〉 ∣ 𝜓 } ) ∈ V ) → ( 〈 𝐴 , 𝐵 〉 ∈ dom ( 𝑉 𝑂 𝐸 ) → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) ) ) |
69 |
48 68
|
sylbi |
⊢ ( ( ¬ 𝑉 ∈ V ∨ ¬ 𝐸 ∈ V ∨ ¬ ( 𝑎 ∈ 𝑉 , 𝑏 ∈ 𝑉 ↦ { 〈 𝑓 , 𝑝 〉 ∣ 𝜓 } ) ∈ V ) → ( 〈 𝐴 , 𝐵 〉 ∈ dom ( 𝑉 𝑂 𝐸 ) → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) ) ) |
70 |
47 69
|
sylbi |
⊢ ( ¬ ( 𝑉 ∈ V ∧ 𝐸 ∈ V ∧ ( 𝑎 ∈ 𝑉 , 𝑏 ∈ 𝑉 ↦ { 〈 𝑓 , 𝑝 〉 ∣ 𝜓 } ) ∈ V ) → ( 〈 𝐴 , 𝐵 〉 ∈ dom ( 𝑉 𝑂 𝐸 ) → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) ) ) |
71 |
46 70
|
pm2.61i |
⊢ ( 〈 𝐴 , 𝐵 〉 ∈ dom ( 𝑉 𝑂 𝐸 ) → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) ) |
72 |
4 71
|
syl |
⊢ ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) ) |
73 |
72
|
pm2.43i |
⊢ ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) |