Step |
Hyp |
Ref |
Expression |
1 |
|
brovex.1 |
⊢ 𝑂 = ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 𝐶 ) |
2 |
|
brovex.2 |
⊢ ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → Rel ( 𝑉 𝑂 𝐸 ) ) |
3 |
|
df-br |
⊢ ( 𝐹 ( 𝑉 𝑂 𝐸 ) 𝑃 ↔ 〈 𝐹 , 𝑃 〉 ∈ ( 𝑉 𝑂 𝐸 ) ) |
4 |
|
ne0i |
⊢ ( 〈 𝐹 , 𝑃 〉 ∈ ( 𝑉 𝑂 𝐸 ) → ( 𝑉 𝑂 𝐸 ) ≠ ∅ ) |
5 |
1
|
mpondm0 |
⊢ ( ¬ ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → ( 𝑉 𝑂 𝐸 ) = ∅ ) |
6 |
5
|
necon1ai |
⊢ ( ( 𝑉 𝑂 𝐸 ) ≠ ∅ → ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ) |
7 |
|
brrelex12 |
⊢ ( ( Rel ( 𝑉 𝑂 𝐸 ) ∧ 𝐹 ( 𝑉 𝑂 𝐸 ) 𝑃 ) → ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) |
8 |
2 7
|
sylan |
⊢ ( ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ 𝐹 ( 𝑉 𝑂 𝐸 ) 𝑃 ) → ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) |
9 |
|
id |
⊢ ( ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) |
10 |
8 9
|
syldan |
⊢ ( ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ 𝐹 ( 𝑉 𝑂 𝐸 ) 𝑃 ) → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) |
11 |
10
|
ex |
⊢ ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → ( 𝐹 ( 𝑉 𝑂 𝐸 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) ) |
12 |
4 6 11
|
3syl |
⊢ ( 〈 𝐹 , 𝑃 〉 ∈ ( 𝑉 𝑂 𝐸 ) → ( 𝐹 ( 𝑉 𝑂 𝐸 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) ) |
13 |
3 12
|
sylbi |
⊢ ( 𝐹 ( 𝑉 𝑂 𝐸 ) 𝑃 → ( 𝐹 ( 𝑉 𝑂 𝐸 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) ) |
14 |
13
|
pm2.43i |
⊢ ( 𝐹 ( 𝑉 𝑂 𝐸 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) |