Metamath Proof Explorer


Theorem brovmpoex

Description: A binary relation of the value of an operation given by the maps-to notation. (Contributed by Alexander van der Vekens, 21-Oct-2017)

Ref Expression
Hypothesis brovmpoex.1 𝑂 = ( 𝑥 ∈ V , 𝑦 ∈ V ↦ { ⟨ 𝑧 , 𝑤 ⟩ ∣ 𝜑 } )
Assertion brovmpoex ( 𝐹 ( 𝑉 𝑂 𝐸 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) )

Proof

Step Hyp Ref Expression
1 brovmpoex.1 𝑂 = ( 𝑥 ∈ V , 𝑦 ∈ V ↦ { ⟨ 𝑧 , 𝑤 ⟩ ∣ 𝜑 } )
2 1 relmpoopab Rel ( 𝑉 𝑂 𝐸 )
3 2 a1i ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → Rel ( 𝑉 𝑂 𝐸 ) )
4 1 3 brovex ( 𝐹 ( 𝑉 𝑂 𝐸 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) )